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FOREWORD 

The work described in this report was accomplished by mem- 

bers of the Department of Engineering and Applied Science, 

Dunham Laboratory, Yale University, under subcontract to the 

SUBIC program (contract NOnr 2512(00)) during the period from 

July 1, 1963 to July 1, 1964.  The Office of Naval Research Is 

the sponsor and General Dynamics/Electric Boat Is the prime 

contrcctor.  Lcdr. R. N. Crawford, USN, is Project Officer 

for ONR; Dr. A. J. van Woerkom Is Project Coordinator for 

Electric Boat and Chief Scientist of the Applied Sciences 

Department. 

The SUBIC program encompasses all aspects of submarine 

system analysis.  This report is the .second of a series 

dealing with acoustic signal processing. 
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ABSTRACT 

This report describes work concerned with the detection 

and determination of the bearing of a single target in an 

isotropic noise field. In the cases studied, the data source 

was assumed to be a single hydrophone or a given array of 

hydrophones. The problems investigated involved studies of 

likelihood ratio detection of sinusoidal signals in gaussian 

noise, likelihood ratio detection of gaussian signals in 

wide-band noise, and determinations of random bearing errors 

due to processing and also due to medium inhomogeneity for 

specific types of sonar systems. 
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I. Introduction 

The studies undertaken daring the period from July 1, 1963, to Ally 1, 

196^, are described in detail in nine progress reports, which serve as 

appendices to the main body of this report. The subject material covered 

in Appendices A through I can be arranged in roughly three categories. 

In all three categories the work was concerned with the processing of a 

signal generated by a single target in a background of Isotropie random 

noise. 

In the first category, the detection of sinusoids or quasi-sinusoids 

of unknown center frequency in a background of gaussian, band-limited 

noise was considered. It is well known that surface and underwater 

targets emit signal components with periodic structures as well as 

components with wide-band random structures. Appendices A, 0, and H give 

the results of basic studies involving the detection of sinusoidal signals 

or of very narrow~band random signals having a center frequency known only 

within a band of uncertainty. The signal source is a single hydrophone, 

and likelihood-ratio techniques are employed. The assumptions and results 

are deiscribed in more detail in Section II. 

In the second category, the studies involved the detection of a wide- 

band directional gaussian signal in a similar background of Isotropie 

noise, T :i3 work, carried out in Appendices C and D, contains extensions 

of studies reported earlier by Yale University,' In Appendix C, the 

performance of a suboptimal detector is compared to that of a likelihood- 

ratio detector. Since the completion of Appendix C, a slightly different 

2 
scheme has been evaluated by Knapp,  In Appendix D, the performance of a 

likelihood-ratio scheme is evaluated for the detection of gaussian signals 
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for the situation in which the average noise power varies frcrn hydrophone 

to hydrophone.   The performance of the likelihood-ratio detector is 

compared to that of an array with infinite clippers and. a standard 

detector,'   The assumptions and results are described in more detail 

\ 

I 

I 
f 
i 

I 

in Section III. 

Finally, in the third category, the computation of random bearing 

errors was considered. Appendices B, E, F, and I are studies in this 

category. Appendix E contains a fundamental study for determining the 

minimum variance of the relative delay between signals generated by 

two hydrophones, by using statistical estimation techniques. Since the 

bearing of a single signal source in a medium is directly related to the 

relative delay between signals generated by two transducers separated by 

a known distance, this study essentially determines the lower bound for 

random bearing error for the simple array due to processing techniques. 

In Appendices F and I, the random bearing errors due to processing r 

I 
techniques for particular types of sonar systems are evaluated. In 

Appendix G, the bearing uncertainty caused by the scattering effect of 

a medium with a randomly varying refraction index is studied. The 

assumptions and results are described, in more detail in Section IV. 

I 

f 

I 
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II.    Optimal Detccixon of Sinusoids or Quasi-Periodic Signa"3 in Noise 

In Appendix A, the detection of a sinusoidal signal of known 

amplitude, tut unknown frequency and phase, in additive gaussian noise 

is considered.    MLddleton's   development of the likelihood-ratio 

(hereafter LR) detector, using time-sampled functions, is closely 

followed.    Two cases for the distilbution of the unknown frequency 

are considered:    (l)   The frequency is equally likely to be one of m 

different frequencies.    (2)   The frequency has a uniform probability 

density function over a band Q, rad/sec wide centered at w   rad/soc. 

The LR formed by the optimum detector is 

(f(v/s)> 

*(v)= £ 
f(v/o) 

(1) 

where s is the desired signal vector, n is the noise vector, v = £ + n 

is the received signal, and f(v/s) and f(v/o) are conditional 

probability density functions. The operation {) indicates averaging 
b 

over the signal parameters of phase and frequency. The detection scheme 

is essentially one of energy measurement, that is, an incoherent scheme, 

since /sV = 0 . The logarithm of the LR is used as the tost statistic 

because it is more easily intorpretable. 

The performance index defined in Eq, (2) is used to make appropriate 

comparisons, end has been used previously. 

2 

R = 

log t{v))      -(log  ^(v)) 
~ /S+N  \    ~ 'I 

( 

T (2) 

log l{v) - (log ^(v) 
N  \     /N 
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Tho index R is an output signal-to-noise ratio (hereafter SNR) for the 

LR detector. The operations \ )Q w and ( )M indicate further averages 

taken with signal and noise present, and iriLth signal absent respectively. 

In the series expansion of log l(v), if only the torins roprssonting 

quadratic operations on v are retained for the LR detector, we have 

log ^(v)^| v'G v -| tr(KG) - p tr(K G)2 (3) 

where 

G = rVs s'J) K"1 

and K is the covariance matrix for the noise. The last two terms in 

Eq. (3) represent bias terms oL' tho detector. This approximation is 

justified in the literature on tho basis of small signal-to-noise ratio, 

For the situation in which the noise is white and ideally band- 

limited, and the unknown frequency 'ias the discrota distribution, the 

variable term of Eq. (3) is 

2      , m v  2" 

1      ,  n       ^      A 
_  Vt   G   V   °    Tt-K 
1 IimNV 

m 

E 
k=l 

v(t) cos ai t dt     +    / v(t) sin cat dt 

o /      ^ 0 

whore A ir  the  signal amplitude, N is tho noise power, T is tne 

observation time,  and A is tho time interval dictated by the sampling 

thoorom.    From Eq.   (5) the detector is soon to consist of a bank of m 

correlators and squarers  (Figure 1, Appendix A). 

Next, for the case in which the statistics of the unknown frequency 

arc given by uniform probability density function ovor a band ß rad/sec 

vd.de,  the variable tonn in Eq,   (3) is given by tho quadratic form 

00 

(bJ) 

9 

i 
T. 

i j        : 
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IF 

i 

I 

i 

i 

i 
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r,   n    n 

vsG v « -*Tr y     y  v.v. sine (Ji{t. - t ) cos w (t 

1=1 3=1 
d ovui t

j
) 

where 

1-1 

The output SNR is given by 

and sine a ■ 
sir», n.rt 

na 

n     n 

(6) 

R« I tr(KG)2 -= -^ ^   )] 
^   1-1 j=l 

sine ^(t. - t.) cos w (t. - 
12 

S' 

I?? 

1T   IT 

dx 1 dy sinc^(:c - y) 

'0      "t) 

 Tl m a 0 

IT (7) 

if   co   »   ß .    w T »   1 ,    (5 T   »   1 .    and   N = N S2 , 0 '      0 *   J. ' 0 

Finally, for the situation in which the noiso has a bandwidth equal 

to that of the signal uncertainty, it is shown that the optimum detector 

is a square-law device followed by an integrator.    The SNR is 

R 
A^T2 

(8) 

-y) 

Both the results    of Eqs,   (8) and (7) are plotted in Fig. 2 of Appendix A. 

The optimal narrow-band detection index is slightly greater than that for 

the wide-band case,  because it is assumed that the ideal profilter 
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necessaiy to process the wide-band noise to a narrow-band noise has been 

operating on the received signal for an infinito time, not just in the 

observation interval {0,1). 

The previous results apply to the received signal froin a single 
2 

hydrophone. For an array of M hydrophones, the detection index is M 

times the above expressions. Expressions are also derived in Appendix A 

ff.r the case of noa-whito background noise, and a general expression is 

given for tho output signal-to-noise ratio for suboptiraum incoherent 

detectors. 

Tho neglect of the higher-order terms in the expansion of log ^(v) 

is based on the assumption that low prodotection SNR (A /2N) makes the 

higher-order terms negligible. This is the usual assumption made in the 

literature. However, for certain classes of signals, namely tho one 

considered in Appendix A, long integration or observation time can make 

the higher-order terms for the expansion of log ^(v) become predominant,        i 

oven though tho predetoction SNR is low. 

In Appendix G} a study is carried out of the conditions undor which 

tho higher-order torms in the series for log •ß(v) do not become 

negligible. Throe different signal casos arc considered: 

1) A gausaian random signal which has a flat spectral density over 

a band of width Si rad/scc. 

2) A narrow-band gaussian random signal with bandwidth & rad/sec 

and center frequency u rad/sec. In this case co is unknown 
c c 

I 
I 

i 

- I 
u   i 

1 
! 

i 
and has a uniform probability density function over the band ß 

and Ü.   «   9.  . 

3) A  sinusoid of constant amplitudo, unknown frequency Jnd phase, 

tho frequency having a uniform probability density function 
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over the band Ü.    This is the case treated partially in 

Appendix A. 

In each case the noise is assumed gaussian and has a flat spectral density 

over ü,  the "band" of the signal. 

Since the noise is white, and the signals described above are 

incoherent in the sense that /s^ = 0 , the averaged LR and the tost 

statistic are found to be 

and 

*(v) - expL IJ ^ s.2 ) /l + ^(s»ir1v)   + ijjte'jf1^ + • • • 
\ i-1     / \ ' / 

log ^(v) ■= - 5ff )] ^ + ? (WV 

* ^T ((s'üV) - I ((s'K-1!)2)2 

+ 0(s6) 

(9) 

(10) 

Equation (10) is exact for terms through   0(s  ). 

In order to justify either using or neglecting higher-order terms for 

the signal in Eq.   (10), the change or deflection in those terms must be 

examined in going from the "noise-only" condition to the "signal-plus- 

noise" condition.    The total change or dofloction is the numerator term 

(log *(vV       - (log *(v)/     in Eq.   (2).    For each of the three signal 

cases,  the following deflections  (AE) are calculated; 



AE 0(s2} = AE 1  / | ((S'KS) (U) 

and 

ASlfo^) » AE ^/(S-KS^^CS/KS)' 

AE largest term in 0(s  ) = AE ̂ (^fh) 

(12) 

(13) 
I 

The computations of the deflections, especially for higher^order 

terms, are extremely complicated. The results of the computations are 

A2 
summarized in Table 1, in which the predetection SNR, ^- = W * 

Signal Description AE 0(s2) AEFO^J 
1 r               AT 

AE largest 0(3  ) 

1,    Random gaussian 
Bandwidth Q 

R.2 IT "Ri31T ^IT 

2,    Random gaussian 
Bandwidth R2 3JT Ri 

R.3 JT 

1      3 
2b^   8b 

(Jr) not computed 

3.    Sinusoid of 
constant amplitude 

Unknown frequency 
and phase 

\2P |R.h(2r)3 - R^Cfr)2 

- Ri
3 Jr 

]\6($f 

I 

] 

I 

Table 1   Deflectiors of Series Terms for log ^(v) 

I 



From Table 1 it can be seen that only the random signal having 

bandv/idth Q. satisfies the assumptions made in Appendix A. All deflection 

terms for this signal are proportional to jjfr, and higher-order terms 

hv 
V depend on higher powers of R..    Thus, for small R., the approximation b; 

terms of the   O(s')   is sufficient.    The narrow-band gaussian signal with 

,2 uncertain center frequency has    AE o^) increasing primarily as (IjJr) 

and the same deflection for the steady sinusoidal signal increases as 

3 
((jJT) . Higher-order deflections increase with higher powers of ^T. 

For a numerical example, let R. = ,1 , b « .1 , and (jft = 100 . 

The numerical results from direct substitution into the expressions in 

Table 1 are given in Table 2. 

\          Signal Description AE(O(S
2
)1 AE[O(^)J AE|largest 0(s ) | 

\       1. Random gaussian 
Bandwidth fi 

1.0 -.1 \ 

Z.    Random gaussian 
Bandwidth ß. 

1.0 3.19 
1 

3, Sinusoid of constant 
amplitude 

- 

1.0 66.6 3333 

Table 2  Numerical Values for Deflections 

R1 =.1 , b = ,1 , (jJT = 100 

The numerical values chosen above are used because the output SNR for the 

random signal of bandwidth 9, has the same expression as that for AJbj0(3 ) 

The table thus gives a rather marginal output SNR for detection purposes. 

For the other signals, the deflections for higher-order terms are much 

larger than that for AE 0(32) and therefore cannot be neglected. 
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m 

tW-^Vi exp 
i=l 

log L(v, w. ) ilk) 

i»l 

dividea this space into the "signal" and "no signal" regions. 

I 
I 

I 

The latter two signal cases are nonergodic and if one ^ere to construct 

an efficient detector, the operations corresponding to the higher-order 

terms of Eq. (10) would have to be built into the detector. A consideration 

of the higher-order terms for a signal whose center frequency is equally- 

likely to be any one of m different frequencies suggests a band-splitting 

detector containing m filters, and nonlinear operation on the output of each 

of the detectors. Such a technique is examined in Appendix H. 

In Appendix H the optimum detector structure is determined for the 

case in which the signal is assumed to be a sinusoid with known amplitude 

and phase and unknown frequency. The frequency is assumed to take on any 

one of m equal y likely values. The phase is assumed to be known in order 

to keep the mathematical development relatively simple. 

The averaged LR where one parameter is unknown and may take on only 

discrete values can be expressed as 

I 

T 

I : 

l 
l 

where w,  are the possible frequencies, p.  eve the respective probabilities 

of occurrence, and L(v,a) ) are the LR's for particular values of frequency. 

The decision scheme consist? of comparing ^(v) with a pre-set threshold k: 

if £(v) < k, "no signal" is the decision; if    ^(v) >k , "signal present" 

is the decision.    The quantities    log L(v,w. )   in Eq.   (lit) are considered 

as coordinates of an m-dimensional space for the received signal v.    The 

boundary I 
^   p^^ exp    log LCv,^/!   = k 

f 
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The decision scheine is examined in detail for the two-frequency case, 

The boundary between the decision regions is given by 

log L(v,w2) = log J2k - exp flog 1(7,^)1! 

The curves are shown in Appendix H^, Figure 1, and are asymptotic to the 

straight lines   log L^OL ) « log 2k   and   log Liv,^) => log 2k . 

Conditional false-alarm and conditional false-dismissal probabilities 

are calculated for the optimum detector and for a suboptimum detector 

for which the decision boundary is 

(15) 

where 

log L(V,WL ) + log L(v,(^) = 2 log k - TJ 

d « -L I s2(t) dt 
^oj 

0 

(16) 

(17) 

The quantity d is a detection index and may bo considered the post-detection 

SNR. 

For large values of d, the boundary given by Eq,   (15) may be replaced 

by its straight line asymptotes, and the false-alarm and false-dismssal 

probabilities are given by 

1 1 

1 - 

^?+vil0g2k) l + ^jV?+^log 2k 

1 ^-viioe2i nj 5+-ilog 2k 
Vd 

(18) 

(19) 

whore ^(x) is the normal probability integral . 5 



12 

For the "sum-and-test" detector, defined by the decision boundary in 

Eq. (16), a and 8 are given by 

a - 1 -J|l/f^~logk 
'J 

i i-l B V^ 
lorr k 

/ 

(20) 

(21) 

From Appendix H, Fig. ii, the performance of the sum-and-test detector 

becomes progressively poorer than the optimum detector as d becomes larger, 

It should be noted that the optimum detector for large d becomes a band- 

splitting detector by virtue of the separate-decision criteria. The sum- 

and-test detector is derived by omitting higher-order terms in the series 

expansion for log ^(v). Thus Fig, k shows the effect of this omission. 

The optimum or band-splitting decision scheme and the sum-and-test 

decision scheme are also examined and compared for the general or m- 

frequency case, whore p, = - . The decision boundary surface for the 

m-dimensional space is given by 

m 

m / J 

r 
^ex, p.ogMv,W.J 

i=l 

and that for the sub-optimum "sum-and-test"  schcmG by 

m 

(22) 

) log L(v,w ) = m log k - (m-l) TT (23) 

i»l 

The comparison between the performance of the two detectors is 

carried out by evaluating t).a ratio of the output SIIR's for both systems 

for equal false-alarm and false-dismisdal probabilities. This gives the 

i 
i 
I 
i 
I 
I 
I 
i 

I 
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ratio of the observation times necessary to achieve identical detection 

performance in each case. These results are given in Appendix H, Fig. 6, 

and are reproduced in Table 3, for a = ß * .01 . 

■ 

\ 

j  Ratio of detection indices 
i   or integration times 

|        sum 

V 1 1.8 11 72 

Number of signal 
frequencies - m 1 2 16 128  | 

Table 3  Ratio of Detection Indices for "Sum-and-Test" 

and "Band-Splitting" Detectorsj a = ß «= .01 

It can be seen from Table 3 that the advantage of the band-splitting 

technique becomes greater and greater as the number of possible 

frequencies increases. Thus the penalty paid by neglecting higher- 

order terms in the series expansion for log ^(v) can be quite large. 



III. Detection of Directional Gaussian Slgnala in Isotropie Noise 

In Appendix C a suboptimum detection scheme for processing the 

outputs of M hydrophones is evaluated. Non-zero correlation of the noise 

components of tho hydrophone outputs is assumed. The suboptiraum schema 

consists of summing the outputs, and then passing the resulting voltage 

through fin Eckart filter, squarer, and low-pass filter. 

The index used to compare the performance of the suboptiraum detector 

to that for the LR detector is the output signal-to-noise ratio defined 

in a manner similar to that found in Eq. (2)j 

„ (av. output with signal) - (av. output—noise only) a  A(av. output) /„.x 

standard deviation of output with noise only      D(output) 

The index defined in Eq. (2I4) is actually analogous to the square root of 

that found in Eq. (2). The denominator is evaluated with noise only since 

we are concerned with threshold detection problems. 

For tho optimum or LR detector, the index has been shown to be 

,1/2 

1/2 

opt 
/jr 

2n/ 
^Q(co)l dco 
N(co) 

(25) 

where S(a)) and N(Cü) are the signal and tho noise spectral densities 

respectively and Q(«) is the array gain defined by ßryn and is given by 

0(03 ) 
n 

Tr P(n) Q-^n) (26) 

In Eq. (26) P(n) and Q(n) are the normalized correlation matrices of 

signal and noise respectively. For the array steered on target and no 

correlation between the noise outputs at ^ach hydrophone, we have 

i 

l 
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opt 
.2n) 

1/2 
M 

1/2 

(27) 

The Optimum ctetector for the case of no cross-correlation for the noise 

components is identical to the suboptimum detector described previously. 

The purpose of the study is the evaluation of the effects of cross- 

correlation for the noise components of different hydrophones. 

The detection index for the suboptimum svstem having a general 

filter with the response function H(jw) is found to be 

S(co) 

r = 
2n 

1/2    , 

H(jco) dw 

•l2 

H(jw) 

M     M 

E E oihW 
i=l h=l 

dw 

T7? 
(28) 

In Eq. (28), G.. (w) is the cross-spectral density for the noise components 

of the i ' and h  hydrophones respectively. For a spherically Isotropie 

noise field, where d., is the distance between hydrophones i and h, 

sin ore 
Gih(a)) = H(W) 

ih 

WT 
ih 

and 

(29) 

ih 
ih 

(30) 

The Eckart filter has the characteristic 

HO) = A 
S(co) 

in^) 
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If one assuriies further that 

S(co) 

N(co) 

then Eq. (28) reduces to 

IW > Ü) 

16 

(31) 

I >B 

.-.,... 

r- = —   M — 
1 I 2n 1    N 

CO 

CO 

1*1 
0 

S^1     sin &OT 
y (M^)—2 

17? 

do) 

d 
'0  c 

(32) 

for a linear array with elements having equal spacing d and x 

The best linear filter function for ruudmizing r in Eq. (28) is, 

however, not the Eckart filter, but is found in Eq. (33) by means of the 

2 
calculus of variations. 

H(jco) TTTT 
S(co) 

E SGih^) 
i=l h<=l 

(33) 

For this situation, and utilizing the assumptions in Eqs. (29) and (31), 

Eq. (28) reduces to 

.2  -V2 

i 

'2n 
n N 

60 
o    M-l 

1*1 

sin tor 

4jrr 
dw 

Table 5 gives the results of a numerical evaluation of Eqs. (25), (32) 

and (3I4) for a five-element linear array with 2-ft, spacing. The 

1 '2 
results are normalized with respect to  (Tw /2n) / M (S/N) . 

(3U) 

I 

1 
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X.     Upper cut-off 
detector\  frequency 

Nskcps 
1 2 3 5 10 1* 

1.    Likelihood ratio 
detector   Eq.   (25) .75 1.05 1.05 l.Oli 1.01 1.005 

2.    Power detector with 
Eckart filter   Eq.   (32) • ~.> .hi .55 .6h .75 .81 

3.    Power detector with 
optimum filter 
Eq.  (310 

.h9 .90 .99 1.01 1.00 1.00 

Table 5 Normalized Performance Indices 

as Functions of Upper Cut-Off 

Frequency for Three Detectors 

From Table 5 it is easily seen that the detector with the Eckart 

filter is measurably inferior to the other two detector systems, even for 

reasonably high cut-off frequencies.    However, the index for the power 

detector with the optimum prefliter approaches that for the LR detector 

even for reasonably low cut-off frequencies. 

It is suspected that any simple prefilter having high-pass 

characteristics with a cut-off frequency in the vicinity of 1250 cps 

would yield a system with a performance index closely approaching that 

of the detector with the optimum prefilter.    All the optimum prefilter 

does is to attenuate the frequency band over which appreciable correlation 

exists between the noise components from different hydrophones.    Most 

sonar systems are designed with high-paas characteristics, so it is 

unlikely that significant improvement can te obtained by changing 

present system design. 
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For the study in Appendix D, it is assumed that the noise outputs of 

different hydrophones are not correlated, and that the noise power outputs 

from different hydrophones are not the same. Likelihood-ratio detection 

is examined and the results are coinpared to those for a system using 

1 3 infinite clippers, which has been examined previously. ' 

The detection index defined in Eq. {2k) for the LR detector is 

-11/2 

'opt   2n 

M 
'ri S 
Lw: 
1=1 

gs(a) ] 
dw (35) 

In Eq, (35), S is the &j.gnal power at each hydrophone, N. is the noise 

th 
power at the i  hydrophone, and g (w) and g (co) are the normalized 

s      n 

signal and noise spectral densities respectively. The result in Eq, (35) 

is equal to that in Eq. (27) for a LR detector with input SNR 

M 
S  1 
N " M 

i=l 
N, 
i 

at each hydrophone. However, as stated previously, the LR detector with 

the same SNR at each hydrophone and no noiae correlation between 

hydrophones is equivalent to a simple power detector preceded by an 

Eckart fil+3r. 

Thus the LR detector for the case of different noise powers at each 

hydrophone is instrumented by a gain control following each hydrophone, 

followed by the power detector with an Eckart pre filter. The gain 

settings are such that the SNR after summation for the system with 

different noiso powert! at each hydrophone is equal to that for the system 

! 

! 

i 

I 
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with equal noise powers at each hydrophonec    With the use of this 

equivalence, the gain settings k. are found to be 

kia r W 
i 

and the average pov/er at the output of each gain control varies as «- 

r « \). 
The comparison between the LR detector and the power detector with 

infinite clippers following the hydrophones is accomplished by comparing 

each to a power detector without clippers, k  ratio of performance indices 

is used for the comparison. The ratio of the performance index for the 

LR detector with thd k. determined by Eq, (36) to that for a power 

detector with an Eckart prefliter (k. =1) is 

opt 
M    M 

(37) 

undipped    i=l  1=1 

3 From previous work, the ratio of the SNR for a power detector wi«h 

infinite clippers following the hydrophones to that for a detector without 

the clippers can be found to be 

M 
-1/2 

'undipped i=l j-i+1 

M 

i=l 

(38) 

For a simple numerical computation, it is assumed that exactly pM 

hydrophones take on a high noise value N.. and (l~p)H hydrophones take on 

a low noise value NT. This seems reasonable since the noise values are 

determined by known patterns of flow noise. Other statistical descriptions 

are considered in Appendix D, If b ^ ^„/iL , Eq. (37) reduces to 



Fi « p
2 + (1-p)2 + p(l-p)(b + b"1) 

and for large M Eq3 (38) becomes 

F2 = .89 p(b'
1//2-l) + 1 p(b-l) + lj 

Equations  (39) and (i|0) are evaluated in Table 6 for   p = w , which 

yields the maxitmun value of F1 and close to the maxiitium value of F«. 

1 3 10 100 1000 

undipped 

1 1.25 3.02 25 tSo 

rclipped     _ 
2 

r undipped 

.89 1.11 2.V 13,6 118 

20 

(39) 

0*0) 

Table 6  Ratios of Performance Indices 

for Different Values of Noise 

Power Ratio 

The results in Table 6 represent extreme values of improvement for 

systems in wliich the noise powers are known to vary between two limits. 

The improvement factor F, for the LR detector as IL/KL—> ^  is only 
X ML 

2/,89    times the improvement factor for the standard detector with 

infinite clippers. 

Since practical situations involve noise pouora distributed inside 

a relative range of usually no more than 100 to 1, with most of the noise 

i 
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t 

powers near the lower level, the advantage gained by using the 

instrumentation to set k. would be significantly less than 2/,89 . 

Moreover, the possibilities of nonstationarity, coupled with the 

complexity of estimating N. to drive automatic gain control circuits, 

makes the simplicity of the infinite clipper attractive. 

IV. Random Bearing Errors 

Appendix E contains a basic study for determining the minimum 

variance in estimating the time delay 6 between the signal components 

of the outputs of two hydrophones. The total outputs for the hydrophones 

are given by s(t) + n-(t) and s(t-6) + n^t) . It is assumed that 

signal and noise are gaussian and ideally limited to a band W cps wide, 

and the noise components are not correlated. Signal and noise are thus 

completely described by 2TW samples for an observation time T, 

The data available to the estimator are given by the row vector 

where 

X    l=      \,X,   ,      X-,     X_,  ,   ,   ,  j      X-jrpy J 

and 

x, 
i 

yi * a 

"   s 
i 

2W 

2W ~ 2\} 2 2W 

7 
A well-Icnown tiieorem    of statistical estimation states that the 

best estimate, ktt,  of normalized time delay, k,  has a variance given by 

(la) 

(1*2) 

m 



"TirinwiinmillWllllllllHlllBiHllinnFniiWiMniii iiiiiiiinmiiwi» liniiiiiiiwiiiHiii ■wniiimiiiiiiiiiiii a i iiimwrmwnrBifiwBrfn T"~T 

22 

(k*-kr I log  P(fjk) 
-1 

ih6) 

where P(£jk) is the probability density function for £, and is a function 

of the parameter to be estimated. The density function is gaussian and has 

ijTW dim.ensions. 

P(^k) = 

(2n) 
2TW 

1     iTä-pf lirt ihl) 

\ 

In Eq.   {kl), M,   is the covariance matrix for£. 

The operations on P(^jk) described in Eq,   (I46) ai'e tedious and require 

extensive matrix manipul oion.    The result obtained for the case   k = 0   is 

(k*-k)' > 
(S + N1)(S + N2)- S' 

2S 

-i-l 

2Wr ^ - log(2WT-l)- .$772 

(kB) 
s  s 

Wien the usual assumptions  WT » 1 and rr > rf <<   1 are roa^6» the 

expression in Eq, (I48) may be simplified and translated to a bearing 

uncertainty with the relation 

2 
J0 

c  (  J_ 
d '  2W 

E (k^-k)c m 
Thus 

(N1N2) 
1/2 

JQ-    d 

3 \1/2 u-3/2 T-l/2 

[Qnl 
W (50) 

r 

f 

i 

T 
I 

If the minimum estimation error given by Eq,   (IiO) is attainable, it 

can be attained by a maximum likelihood estimator.    For maxliiium likelihood 

estimation. 
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~~ log P(£jk) = 0 

must be solved for k as a function of I,    This is extremely difficult to 

do, but a nearly equivalent technique is to steer the array physically 

or electronically until 5=0. Since conventional estimation techniques 

produce the mnimum value of ou in Eq, (50), errors involved in this 

steering technique are not investigated. 

The effects of nonstationary signal -'rength and also delay errors 

due to the medium are also discussed briefly in Appendix E. 

Appendix B contais an analysis of the tearing uncertainty due to 

processing errors in a conventional split-beam sonar system. In this 

system (Fig. 1, Appendix B) the outputs of each set of M hydrophones 

from a linear, equally spaced array of 2M hydrophones are summed, and each 

« 

! 

sum is fed into a linear filter. The frequency response functions of 

these filters arc related in that there is 90 phase shift between the 

response functions at all frequencies. The filtered sums are passed 

through infinite clippers, the results are multiplied, and the product 

averaged vdth a low-pasa filter. The signal and noise are gaussian, and 

the noise components from different transducers are uncorrelated. 

The voltages following the summing operation are given by 

t - (i - 1 )T + ni(t)l (51) 

v 

M r 

Jt) -; ^<L[t - (j + M-Dr + W^ m 



where T is the signal time delay between adjacent hydrophones, The 

frequency response functions of the linear filters enjoy the simple 

minimum phase relation 

2h 

V» = jcokyjw) (53) 

where k is a proportionality constant. 

The average output of the low-pass filter is 

y = - arcsin 
n 

R   (0) 

\(0)V0) V? 
(Sh) 

in which R  > R   }  and R  are cross- and autocorrelation functions for 
XjXn        X, Xp % 

the output voltages of the filters described in Eq.   (53). 

For tlireshold signal conditions   -^ «   1     Eq.   (Sh) reduces to 

CO 

a HoÜ")     g (co) 3in wWT sine'' -K— da 

- ^    2 SM ^ 
Tß 

CO HB(jcü)     gn(ü)) cb) 

«CO 

HgOco)     gn(cü) du 

>c? 

17^ 
fö) 

in which g (aj) and g (u) are normalized signal and noise spectral densities, 

as defined previously.    It is easy to see that   y = 0   for   T = 0 . 

The bearing uncertainty is defined by 

(56) o^ ■ 
c dZ 

Ü d    z dT 
T=0 

where a   is the standard deviation for the outnut of the final low-pass 
z 

filter. 
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Evaluation of the terms in Eq. (56) yields 

'0 " Md 

2  co 
11  2.x, 

gn (") dw 

_c? 

1/2 

0) HB(^) gs(w) dco 

-C3 

Employing the calculus of variations, one finds the minimum bearing 

uncertainty to be 

a, 
0mi*  Md 

'snV1,   ays 
ao 

CO 
(gs(") 

\2 

do 

-1/2 

for 

(5?) 

(58) 

12     Kg(w) 
HB(JCü)   BkB-t7-: 

gn (") 

In Eqs. (5?) and (58), OL is the noise bandwidth of the loi^-pass filter. 

In obtaining Eq. (5? ),  an approximation is made which causes the 

result to be approximately 20 per cent lower than the actual answer due 

to the infinite clipping action. Also it is demonstrated in Appendix F 

that the result in Eq. (58) holds for even nore general filter response 

functions, H. (jto) and HR(;ico). 

(59) 

With the use of the spectral model 
8 

2 
-co or 

2 
-co or 

g„(w)   =    6 g   (co)  =    (60) 
0 H- CO    I 

I    0 i 
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JQ min     Md 

'SMP1/    a/212^ 
7      ^^    In (liar) '     radians (61) 

a = 6X10"  ' ,    ~ = 0.1 ,    we have    aü       =  ,01u degrees  . 
min 

For M = 25 , c = 5000 ft/sec , d = 2 ft , CLL = 1 rad/sec ,    r = 10 kyd , 

N 

Two comparisons are carried out between systems with suboptimum 

filters and the system with the filters specified by Eqs. (59) and (53). 

In one case, for the system with the bandpass filter function 

1+3 
CO 

0) 

HB(^) - b 

J 
a 

30,000/ 

1+ j 
CO 

30,000. 
l+j 

CO 
1+ j 

CO 

l45;000M        60,000 

(62) 

the ratio of the bearing uncertainty to the minimum value is below 2 

from ranges of 20 kyd to below 1 kyd. At 3.3 Icyd the ratio is 1.03, 

Tliis investigation shows that optimum filter characteristics need not 

be met exactly if performance closely approaching the optimum is 

desired. This investigation also supports to some extent the statement 

in Section III concerning the approximation of the characteristic 

required by Eq, (33). 

Since the bearing error calculated above is not particularly large, 

it is  highly possible that other sources, such as medium inhomogenoities, 

contribute significant amounts. 

A comparison with the result in Eq. (50) Tor the maximum likelihood 

cstimatcr is also possible.  If ue sut H - ] , .1 ^ - , g (")/g (w) a 1 

for  ho! < .'nV/ and z.;ru  else'i.'hon; , .'I - Ih, - !.' ,  then Ecjs. (58) and 
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(SO) become identicsüL.    The bearing imcertainty for the split-beam system 

considered here is therefore about 20 per cent greater than that for the 

marbTum-likelihood estimator due to approximations involved in obtaining 

Eq.  {$1).    The approximations were made for mathematical expressions that 

were generated due to the infinite clipping action. 

Appendix I contains a study of the bearing errors generated by the 

processing techniques of a PUFFS tracking sonar system.    The basic 

elements of a PUFFS system are shown in Fig, 1, Appendix I, and consist 

o 
of two hydrophones, two DElay Line Time Compressors,    a polarity 

coincidence indicator and summer, a digital-to-analog converter, and a 

nonlinear filter called a W0X~1A tracker.    The analysis of the system 

Is carried out in general terms, and reference to specific numbers, which 

might characterize particular systems, is not omphasiacd.    The operation 

of the system is described in detail in Appendix I, Section I. 

The system operation is such that the output voltage of the 

hydrophone amplifiers are infinitely clipped and time-sampled.    These 

samples from both channels are processed in auch a way as to give a 

real-time estimate of t. 3 cross-correlation function between the signals 

generated by the hydrophones.    The usual assumptions of gaussian input 

signals and noise, and zero noise correlation between channelsj, are made. 

The input SNR is also assumed to bo small.    The WOX-1A tracker determines 

the tine value of the peak of the estimated cross-correlation function by 

employing a gate circuit which makes use of area subtraction and a 

nonlinear error-correction technique. 

The analysis  centers on determining the expressions for (l) the 

K-point correlation estimate genernco- by the tvo DELTIC processors and 

2? 
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the polarity coincidence indicator and summer, (2) the expected gate 

circuit output, (3) the variance of the gate circuit output, and (h) the 

variance of the tracker output. The bearing uncertainty is calculated 

from a relation almost identical to Eq. (5'6). The bearing uncertainty 

represented by the random output of the gate circuit can be directly 

compared to results obtained in Appendix: F. 

A number of general results for bearing uncertainty are obtained in 

Appendix I, tut the simplest to present in this summary are found in 

Eqs. (63) and (61;), 

11/2 
n    c N „-1/2™   G     3 G 

T 

_n_ , c N K-1/2T . n ^ - 1 

X " 2^/2' ' * S ^r + (.i)G/T-i 
'G      21 

T " 32 

12 3 

1/2 

(63) 

m 

\ 

\ 

FjT  ==   ^ j J^Uj . . . 

Equation (63) represents a lower bound on bearing uncertainty and Eq,   (61;), 

an upper bound for the following condition: 

fl 
ST 

g3(") = gn(w) = S (65) 

Also w T ■» n , T is the time between signal samples, K is the number of 

signal samples in the observation period, and G is the width of the gate 

circuit in Eqs.   (63) and (61;),    The results hold only for integer values 

of T • 
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In order to compare these results to those in Eq, (57), we let 

HB(3
W) = 1 > ^ = j^ , and ^0 = | . We get 

,  _ 31/2 c N .,-1/2,, 
T o A n d S 

(66) 

Tha ratios of the results in Eqs. (63) and (61;) to those in Eq, (66) 

give 

/ 

'.|?1 - 
■^ ^(-1)^-1 

G  21 
If " 32 

1/2 

(6?) 

it    G  3 
1/2 

For w =" 1 , for which the gate width is approxijnately equal to the process 

correlation time, the ratio above has an upper bound of 3 and a lower bound 

st   for higher » . 

These results and others included in Appendix I indicate that it is 

desirable to use a fairly large gate width G for high gain or sensitivity. 

However, for gate widths larger than the process correlation time, the 

sensitivity does not increase greatly. The results also show that the 

bearing uncertainty increases as gate width gets larger than the process 

correlation time, but remains relatively constant for gate widths less 

than the corrolation time. Thus a gate width equal to the correlation 

time of the process provides good sensitivity ana low bearing uncertainty. 

This choice peons to hive been used in the design of the present PUFFS 

systems, 
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The efioct of the W0X-1A tracker as a nonlinear filter that increases 

observation time and decreases random bearing eiror is also discussed. 

In Appendix F, the evaluation of bearing errors due to scattering 

in a medium with a fluctuating refractive index is accomplished for a 

split-beam system identical to that described in Appendix B.    Results 

taken from work by Chernov     are employed in the analysis. 

In particular, Chernov assumes a single-frequency plane-wave 

propagating through a medium in which the variance of the refractive 

2 
index is   \\i }.    For typical sonar reception conditions, the variance 

of the phase and log amplitude of the received signal at one location 

after traveling through the random medirra a distance of r feet are 

respectively 

1/2 0 = (ß2)^)Vr (68) 

I 

In Eq.   (68) a is the correlation distance for the spatial xluctuations of 

the refractive index.    Also the following normalized cross-correlation 

function holds for the outputs of two hydrophones broadside to the 

direction of propagation: 

R 
1,2 

h. 

I2 

a 

1,2 
(69) 

where   I is the separation of ■Lhe two hydrophones. 

The bearing uncertainty for the split-beam array of 2M hydrophones 

broadside to the direction of propagation is 

i/2/ 2 \l/2    rl/2 

1 w{m) 

M     M H     M 

u   LA   (p-i)    /_]  Li 
i»l p-l i=l k=l 

(k+M-i) 

1/2 

(70) 
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where 2,2 a d 
- —5- 

«(a)-    a (71) 

The bearing uncertainty is seen to satisfy the inequality 

IT   (Md) y M(HJ) 

If   M » 25 ,    d = 2 ft ,    r = 30,000 ft or 10 kyd ,    a ■» 2 ft , 

1 (v-2) " 5X10"? ,    then Eq.   (70) gives    aQ = 2.8XlO"^ degrees. 

I 

This nuraerical result is an extremely small bearing error. Quite 

possibly the assumed value  of ui ) is several orders of magnitude 

too smallj because more fluctuation of signal power is experimentally 

observed than thit given by Eq. (68) with ([i2y $X10~9  . It is also 

worth noting that the analysis holds for single-frequency signals, It 

is expected that .fluctuations for broadband random signals are even 

smaller. Certainly more work needs to bo done in this area. 



32 

REPERENCES 

1. McDonald, R. A., P. M. Schultheiss, F. B. Tuteur, and T. Usher, 
Jr., "Processing of Data from Sonar Systems," SUBIC Report 
Uia7-63-Oi£, September 1, 1963. 

2. Knapp, C.. "A Power Detector with Optimal Prefiltering for 
Detecting Directional Gaussian Signals in Gaussian Noise 
Fields," GD/EB Report Vlai-6h-009,  February 18, :1.96h. 

3. Usher, T,, "Signal Detection by Arrays in Noise Fields with 
Local Variations," JASA 36, 8, August 196h. 

h.   I'äddleton, D,, An Introduction to Statistical Communlcation 
Theory, McGraw-Hill Book Company, Inc., New York, I960. 

5. National Bureau of Standards, Tables of Normal Probability 
Functions, Applied Math. Series, No. 23, Washington,' 1953. 

6. Bryn, F., "Optimal Signal Processing of Three-Dimensional 
Arrays Operating on Gaussian Signals and Noise," JASA }k} 

3, pp. 289-297, March 1962. 

7. Cramer, H., Mathematical Methods of Statistics, Ch. 32, 
Princeton University Press, 191+6. 

8. Eckart, Carl, "Optimal Rectifier Systems for the Detection 
of Steady Signals," Marine Laboratory, Scripps Institute 
of Oceanography, SIO Reference 52-11, University of 
California, March h,  1952. 

9. Anderson, V. C., "Delay Line Time Compressor (DELTIC)", 
U, S, Patent No. 2,958,039, October 25, I960. 

10, Chernov, L, A., Wave Propagation in a Random Medium, McGraw- 
Hill Book Company, Inc., New York, I960. 



r 3UHBB^n^^BBn»BB8HBi 

.. 

OPTIMAL DETECTION OF A SINUSOID 

WITH UNKNOWN FREQUENCY AND PHASE 

by 

Allen H. Levesque 

Progress Report No. 8 

General Dynamics/Electric Boat Research 

(53-00-10-0231) 

November 1963 

DEPARTMENT  OF  ENGINEERING 

AND  APPLIED   SCIENCE 

YALE  UNIVERSITY 



I, Introduction 

1 2 
Earlier reports ' have dealt with the optimum detection of signals 

which were assumed to be gaussian random processes. It is known, however, 

that various signals with more or less coherent time structure are 

2 
sometimes observed, Tuteur considered the detection of a gaussian signal 

whose power is amplitude modulated by a low frequency sinusoid of known 

amplitude, phase and frequency. This report considers the optimum 

detection of certain baseband signals which are typically observed in 

the frequency range near 100 c.p.s. There is reason to believe that 

these signals are periodic time functions with coherent phase structure, 

but the frequencies are not known precisely. 

For convenience in this analysis the signal is taken to be a steady 

sinusoid with known amplitude but unknown frequency and phase. Since in 

practice the amplitude of such a signal would not be known precisely, 

the results are to be considered as upper bounds on the performance of 

the detection system. 

Two general cases are considered, one in which the frequency of the 

sinusoid is known to be one of a finite discrete set of frequencies, the 

other in which the frequency is given by a flat, unimodal probability 

density function (p.d.f. ) over the "jand of frequency uncertainty, 

II. Likelihood Ratio Detection of General Signals in Additive Gaussian Noise 

The general theory of likelihood ratio (hereafter LR) detection of 

signals in additive gaussian noise has been outlined by several authors, ' 

In this section wo follow rather closely Middleton's development of the 

form of the optimum LR detector. 

A-l 

't 
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A-2 

I 
Here and throughout this report ve  shall assume the following!; 

1) The desired signal is determnistic, though its functional form | 

vdll in general include certain parameters the values of which are not 

known except statistically. The stochastic parameters are assumed 

independent., 

2) The noise is additive and gSussian with zero moan. 

3) The signal and noise processes are independent. 

The general technique for developing the form of the optimum detector 

can be applied equally well for continuous signals or for discrete 

(sampled) signals. However, in order to keep the derivation simple and 

to obviate the necessity of discussing integral equations, we shall 

treat the discrete case. The various time-sampled signal functions 

and noise functions then take the forms of signal vectors and noise 

vectors. The samples are assumed to be uniformly spaced in time, though 

we do not make use of this assumption in this section. 3 

The received signal vector is given by 

v « s + n (l) 

where s is the "desired signal" vector and n is the noise vector (hereafter 

simply referred to as the received signal, the desired sign; i and the 

noise). 

The optimum detector forms the LR 

(f(v/s)> i 

Uv) =  ^ (2)      , 
f(v/£) 

f(v/s) and f(v/o) are conditional probability density functions (p.d.f.'s) 

for the received signal given that the desired signal i preccnt and given 

1 
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A..3 

no signal present, respectively. The averaging operation ^ ) indicatea 
S 

a statistical average over the sot S of signal paranotcrp. Since the 

noise is additive and gaussian with zero mean, we have 

1 - J(V-S)W3) 
f(v/3) ZTT1 Z7?e    c     ~   ~     -- j 

(2nr^(dot K)' 

and 

1 « -1 
,       - wv K v 

(2n)n/2(det K)
n/^ 

whore K is the covariance matrix of the noise. From Eq. (2) wo can write 

/-JCv-s/r^v-sX  JV'KS 
tivj-   (e 2       "'/ "  (5) 

1 ' -1   ' -1 \ 
/- is K 1s + s K v\ 
e 2 ) (6) 

The LR thus calculated is compared to a fixed threshold and if the threshold 

is exceeded, the decision is made that the desired signal is present. 

To derive the form of the optimum detector, we 1) expand the 

exponential form in Eq, (6) in a power series, 2) perform the averaging 

/ \    term by term, and 3) expand ^n ^(v) in another power series. The 
\ /s 

quantity In ^(v), rather than ^(v), is usually taken to he the tost 

statistic in a LR detector. One reason is that ün ^(v) is more readily 

interpretable in terms of electronic correlation and filtering operations. 

For the case of low input signal-to-noise ratio, we shall be able to find 

a suitable approximation to the optimum detector by neglecting certain 

higher order terms in the signal. 
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Tho aforementioned stops are straightforward, and tho following 

e. pension can easily be verified: 

^n ^(v) = ^s K   y) 

I (ä r'i) * 5 ^r^v) m 

^ 

^ 

^ 

<(i,r1v)1') -1 4'KV) (ä'r'i) - J ^'r1!)) 1 //.V-l 

^d'rV 

+ 0(s'h) (7) 

whoro ^ ) implies (    )     throughout. Equation (7) is exact through 
S 

0(s ), We note that if the structure of the desired signal is known 

completely, the averaging operation {  }    over unknown signal parameterä 
S 

is trivial, and each of the seven bracketed terms in Eq, (7) is 

identically equal to zero. In such a case the optimum detector would 

perform tho following operation: 

I 



——1———^——il^^^M -JL. •-:i-.-i\.^u.y::i^^^-.:^.:-,~'s. 

... 

k~S 

^n £(v) = £ K xv - i s K ^ 

a result which can be verified from Eq, (6), 

Noting that 

(8) 

\-\ 
(^ ^ 

(9) 
'S        ^ 'S 

we can distinguish tvjo different classes of optimum detection: 

1) If   /s\  / 0 , the optimum detection process is considered to bo 
WS 

"cohcront,11 In such a case, Eq, (7) contains a term which is linear in v. 

In the threshold case of low input SNR, the principal contribution to 

in l(v) is  from the linear term and the higher order terns can be 

neglected or replaced by appropriate average values. The optimum detection 

operation is then approximately a cross-correlation of the receivod signal 

with a replica of the desired signal, 

2) If (s)  ^ 0 , the optimum detection process is said to bo 
WS 

"incoherent." In such a case, the linear term in Eq, (7) disappears and 

the principal contribution to In  £(v) is from a second order terra 

representing a square law operation on the received signal. As in case 1), 

, „-, 2 
higher order torms in (s K v) are either neglected or replaced by 

appropriate average values, such average values being taken into the 

bias in the threshold comparison. 

III. LR Dotoction of a Sine Wave with Unknown Frequency and Phase— 

Dia ere to Fromoncy Distribution 

In this section wo shall consider the problem of detecting, in the 

presence of additive gaussian noise, a steady sine wave whose amplitude 

is known but whose frequency and phase are statistically described. 
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III. 1. The Form of the Detector 

We consider the desired signal^ in continuous form, to be 

s(t) = A  cos (tot - 0) (10) 

I 

In sampled form, 

s = A^ cos(wt. - 0) (11) 

The radian frequency w and the phase 0 are unknown but their 

probability distributions are known. Let ua assume that the phase 0 is 

uniformly distributed from 0 to 2n, i.e., 

P(0) 

1 

0 

0 < 0 < 2Tt 

elsewhere 

(12) 

We shall assume that the frequency is equally likely to be one of m 

different frequencies; 

P(a)i) = m '      i = l> 2>  •-> m (13) 

f 

! 

In deriving the form of the optimum detector, we are concerned with 

two terms which represent linear and square law operations on the received 

signal, respectively. They are; I 

and 

' ~1 fl) = (s)' K^v 
S   V S " 

1A v-i r\ 1 /.'..-i- '..-i. v K s s K v 

-h'r1^!)^ 
1 v ^ v G v 

(1^) 

(15) 

1 
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i 

where 

(16) 

We see then that the desired signal s enters into the detector operation 

through the forms /s")     and {s £ ) . Averaging over phase first^ 

' 2n 

cos (cot. ~ ft) <$ 

0 (17) 

Thus the optiimun detection is "incoherent."    Turning to the nonlinear terra, 

f      2n 

\s a\ = s T"|   cos(uti - 0) co3(wt. ~ jZi) djü) 

2n 2n 

iU     | cos[u(oi + t  ) - ?0] d0 + ^1     ^ cos w^ - t^) 

I     0 

A2 ^ 
-w- cos co(t.   - t.) J> (18) 

and, averaging over frequency, 

s s 

m 

0,0) 
k yco3 ^(ti V (19) 

In Eq. (?) the linear te^m and the third ordor terms (in s) disappear. 

The most significant fourth order terms (in s) are replaced by their 

averages taken in the absence of desired signal. The detector operation 

is then approximately 
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in  ^(v) ^1 V'G v - | (S'K'V) 

k^^i^j] - $ (^1 
N 

(20) 

l 

V/e note that 

\i     J 
K. 

7S 

/j   Lj\i d/q   ij 
i     J 

tr (K G) (21) 

2A 
v)) 

N 

v G v 
'N 

tr (K G) (22) 
■. 

1 i    2\ 

N 

-^((y'Bi)2 

N 

1 / '- »x    ^ 

77x2       1  .„2 -^ tr (KG)' - J tr^KÖ)        (23) 
i 

Substituting Eqs.   (21),   (22) and (23) into Eq,   (20), we obtain 

{2k) 
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J 

The operation of the optimum detector for the case of a sine wave 

with unknown frequency and unknown phase is given by the incoherent form 

Eq. (210, where G is given by Eq. (l6) and (s s \ by Eq. (19). 

Output Signal-to-Noise Ratio 

Since we shall be concerned in this report with cases of incoherent 

detection, we shall now derive an expression for a performance index 

which we can use to make compari.  J among various optimum and sub-optimum 

detection schemes, A definition ' r  output signal-to-noise ratio which has 

been used in earlier reports is 

R 

\(tn tiv)\    - (In U 
- "'S+N 'N 

A [to tiv)\/ - (in ^(v)) 
L        -J/N     

x        -/N 
(25) 

I For convenience, we shall use this definition here. 

From Eq.   (2lv), above, 

/to tivj)      = i (V'G V)   - 1 tr (K G) - J tr (K G)2 

X
        "/S+N N -S+N '   '       U 

= J As'  + n') G (s + n))    - } tr {K G) • I tr (K 5)2 

' 

~ /a 'G S)   + /s!G n\    + i (nG ^    - J tr (K 3) - J tr (KG 
^\        "'S+N    X~ ~ "^S+N    d ^     TS+N 4 

')2 

TTNS = i tr  (K G)2+ i tr (K G) - i tr  (K G) - J tr (K G) 

I tr  (K G)2 (26) 
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(en liih = ^ /v'S v\ - ^ tr (K Ü) - i tr (K G)2 

= i tr (K G) - | tr (K G) - J tr (K Sf 

-1 ^ (K zf N1- I   / 

Therefore. 

57 ^2 

Also 

in Mvj)      -  4n Mv)) = ^ tr (K G) 

[^n ^(v) / a\ (iQ I V'G A -   | tr (K G) - ^ tr (K G)2 /V'G V) 

|lr (KG) + ^tr (KG)2!' 

(28) 

i tr (K G)2 + J tr K G | [tr (K G) 

- r tr (K G)2 tr (K G) +   ^ tr (K G) + ^ tr (K 5) 

?tr (KG)2 + ^ tr (K G)' (29) 

Therefore, 

^n e(v) ) - /in e{v)\      - i tr (KG)2 (30) 

and,  from Eq,  (25), 

R = i tr (K G)2 (31) 

I 

I 
I 
I 
I 
! 

I 
I 
I 
I 
I 

i 



I 
i 

1 

III. 2. Detection in White Noise 

If the background noise is white and 

covariance matrix for the noise, K, is a 

K = N I 

A-11 

wide-sense stationary, the 

fiiagonal matrix and is given by 

where N is the noise power and I is the uikit matrix.    Therefore, 

m 

G 
2mN 

2^ 
k=l 

Tho operation on the received signal is t 

n     n 

2 im 

(32) 

^cLc^^-t.) (33) 

hen 

ZSv 
i=l j=l 

n    n 

m 

i\T.cos \{ti - ti) 

^l 
W   M 

k-l 

4 
km' 

n     n 

k=l i=l j=L 

i=l 

m 

limN' I 
k=l 

M 
i=l 

n 

I Vj 3in ic^ sin V: 
3=1 

,2     ,   n 21 

OS   £4 tJ   1    + COS   01 t Z visin ^^ 
i=l 

It is informative to approximate the innej? sujimiations by integrations: 

in 

1    \ A' ^■z^^r^Z 
UniN  Ö k=l 

'(t) c [33 co,t dt 

(3li) 

2 T 2-, 

/ 

+     I v(t) sin wt dt 

(35) 
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f 
where A is the time interval between uniformly spaced samples and T is the      * 

observation time of the received signal. T 

Thus the optimum detector consists of a bank of ra pairs of correlators 

and squarers followed by an adder and a threshold device. These operations 

are shown in Figure 1. The correlators in tha detector, shown typically 

in the dashed box in Fig. 1, can be implemented by matched filters, ■*- 

It is clear that if the uncertainty about the frequency of the sine 

wave is enlarged to a greater and greater number of discrete frequencies, 

we simply incorporate more and more pairs of correlators and squarers j 

into the detector. It is also clear from Eq, (35) that if the probabilities 
T 

of the m discrete frequencies are not uniform, the m terms in the „L 

summation are simply weighted according to the probabil ties of the y 

various frequencies, In terms of the actual detector, the m inputs to 

the adder are appropriately weighted. 

III. 3. Detection in Non-White Noise 

If the noise background is non-white, the covariance matrix K is 

no longer diagonal, and the matrix G becomes in general 

5 = r1 /s s') K"1 

K-1^ 
2 m 1 

k=l 

LZ-^l C0S  ^^ C0S ^ J + 3in ^i Sin ^J [ -1 (36) 
k=l 

i ? 

! 

! 



squarers 

sin a) 

'-^-^-^ 

cos ^-s. 
v{t) 

»in »JL_^)_ ^> 

COS toj 

sin w^t 

K> 
j    .        fis^S* jtr(KG)+ ^-tr (KG) 

FIG. 1 Optimum    Detector 
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The operation on the received signal then becomes 

m 

? v'^ - i E ^ml\co3 ^cos ^ 
k=l 

-I ^K v 

f- y. i^'1)sin \^sin ^'^ 
k=l   ^ 

m / n  n 

k-l \ i=l j-1 

. K^v 

/ 

m / n  n 

v,  K7, sin cat. 

k=l \ i=l 3=1 

IV. LR Detection of a Sine Wave with Unknovm Frequency and Phase-. 

Continuous Frequency Distribution 

(37) 

A more general kind of uncertainty about the frequency of the sine 

wave is one in which the unknown frequency has a p.d.f. over a range of 

the spectrum. In this section we assume that the frequency is known only 

to lie between certain upper and lower limits. For convenience we shall 

assume that the p.d.f. is flat and unimodal. 

IV. 1. The Form of the Optimum Detector 

As in sections III.l through III.3, the desired sigral in continuous 

form is taken to be 

s(t) = A cos (at - 0) (38) 

and in sampled form, 

a = A <} cos (cat, -ft). (39) 

The phase 0 is assumed to be uniformly distributed over 0, 2n and 

the radian frequency co to bo uniformly distributed over a band 9. rnd/soc 

■ 

■ 

■ 

wide centered a* u>   rad/sec, i.e., 
o 



^ 'yw!!»;ff{iBBnflPT^"M"',"i ^g—m-—~'^"'"°,t™—' *" 

and 

p(0) = <• 

1 
2n 

0 < ■•, /■ ^ c'n 

elseinorc 

A-lli 

(ho) 

p(w) = j 

1 
CO      -  >r      <     W      <     CJ     +   x 

0 <'     - -        0 2 

elsewhere 

(III) 

As before see lq.  (I?) 

n =    0 m 
and the optimum detector is termed "incoherent."    The Dpemtdon on the 

received signal is thus 

Carrying out the averaging 

(18)1 

i v G v = i v K ^ (s s )   K    Y (ii3) 

over ß and ^ we have first   i secj Bq, 

: sf COS   CO (t, -1,) i i i' / {hh) 

K 

Averaging over co, 

2 
,     , A    sin wCt.   - t   ) 

\      .^.Oü 2Q(t.   - t   ) 2ß(t,   - t.) 

W =   a3     + 
U   i 
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ß(t:i - t ) 
lr<EinG *-   cos co (t, ~ t.)} 

(t.   - t .) COS co (-L  ~ t.) 
;T o^ i       y (W) 

sin nx 
nx 

2n 

(I46) 

ihl) 

ration of the optimum dirtcctor upon the received signal is therefore 

n by 

K v C v w -f v K" < sine (|) (t, - t.) cos w (t. - t.) 
i - - -  ,.1 -.. - j   -u  1   j     01   3 

K xv (I48) 

^' ii. ^'^-i^i00 i" W'hitc Noise 

Broadband Low--P333 Whito Hoise 

We ahall now considor a casn i« v;hich the power density spectrum of 

tho noise 13 flat vdth amplitude N„ watts/rad/sec over the frequency 

range 0,W rad/sec and contains no power in frequencies greater than W, i.e., 

N » W N 
0 

Uüing well-known roau'Lts'' of sampling analysis^  v/e can assume that 

H.'inrploa of the noise n(t) will be uncorrelatod (and hence statistically 

indepv-ndent,  ?lnce v,he rioj.se is gaussion) if samples are taken at time 

ir.torvala 

m 

A ' 
2 X bandvadth in c.p.s. 

(50) 

w (51) 
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It is assumed that W is greater than the highest possible signal 

frequency, i.e., ^ > w + ö ' and t'hat' ^ >> "^ •    Under these 

assumptions, all of the information in the received continuous signal 

v(t), observed during the interval (0,T), will be contained in the 

samples taken at intervals of « . 

For the noise spectrum and sampling procedure described, the 

covariance matrix K is diagonal and Eq, (I48) becomes 

w v G v = —w v J sine (p (t. - t.) cos OJ (t. - t .)l v 2   )^2 - I     X  !    ^      0     i Of- 

i 
I  i 
»Si i 

I 
I 
i 
i 

n  n 

—*• )  ) v.v. sine ^ (t. • t.) cos w (t, - t.) uj2 ^ ^ 1 j    x ^ x  j^    0' i  y 
i-1 j=l 

(52) 

The operation of the optimum detector upon the received signal is thus 

given by the quadratic form Eq. (52), The output signal-to-noise ratio R, 

from Eq, (31), is 

R = I tr (K G)2 = ~ tr |/s s') K"1] 

n  n 

—7 sine i (t. - t.) cos w (t. - t,) 

i=l .1=1 

(53) 

I 

I 

For purposes of computation, we obtain an approximation to R: for 
2 

a) » Ö and co T » 1 , cos w (t. - t.) can bo replaced by its 
0 0     '     0^ i        y ' 

average value, x , and 

ii 
n  n 

-1 

16NU ^-i 'r\L 

sine J (ti - t ) (Sh) 
r 
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Replacing the double summation in Eq, (5J4) by a double integration w 

obtain a further approximationt 

T       T 
It      w2   f (' 9 

R~~?~K . ^     dt I da sine   J (t - a) 
l6N       n  j j 

0 0 
JT   |T 

dx     dy   sine (x - y) (55) 

The output SNR, as given by Eq. (510, is plotted in Fig, 2 for 

¥ = 10 S2, As the noise bandwidth W becomes very much larger than 2,  the 

summation in Eq. (53) converges to the integral in Eq. (55). Eq. (55) 

can thus be regarded as the output SNR for the case of continuous filtering. 

From tho figure it can be seen that a suitable approximation to R 

for reasonably long integration time, i.e., for (j)T » 1 , is 

(55a) 

Rewriting Eq, (55a) slightly, 

8n N fl 
0 

In this form we see that R is proportional to observation time T and 

inversely proportional to the bandwidth of signal frequency uncertainty Ü. 

Ideally Filtered White Noise 

If at the detector it is known with certainty that the frequency of 

the desired signal lies between the strict limits co - j }  u>   + w , 

then prior to detection, tho incoming signal should bo filtered to remove 

all noise power outside those frequency limits. Wo shall now consider 
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such a case and shall assume that the filtering is ideal, so that the noise 

spectral level after filtering is N within w - *■ . w + » • and is zero 

elsewhere. Wo then have N = N S2 . 
o 

For such strictly band-limited noise, we can choose a sampling 

interval so that the samples of the noise will be completely uncorrolated. 

Sampling theory dictates that such samples bo taken at intervals 

I 
where S! = 2n (j) . In order that the noise be completely specified by the 

sample values, it is necessary to sample both the noise waveform n(t) and 

its Hubert transform h(t). Those sample values, token at the same 

sampling instant, ere combined into a "complex sample," n(t. ) + j h(t. ) , 

Applying these ideas to the detection problem at hand, wo can simply 

replace v in Eq, (52) by v + 3 u whore u represents the sampled Hilbort 

transform of v(t). For j) T » 1 , all of the information in tho received 

signal v(t) will be contained in the complex samples v(t.) + 3 u(t. ) 

taken at intervals —. The noise covariancc matrix is again diagonal. 

Thus, rewriting Eq. (52) for the band-pass case, 

I 
I 
i 
I 
I 
i 

I 
I 
i 

1 (v'- j u') G (v + j u) 
P v- 

n  n 

(v.v, + u.u.) öinc I (t - t ) cos w (t. - t )  (56) 

1-1 .1-1 

whorc, now, n o J T, 

■it 5 
For an excellent discussion of sampling analysis, see Woodward.' 
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I 

Hovrover, wo noto that 

sine (jj (t. - t.)   «»< 
\'^ 

(t   -t J-kl 
3 | 

(57) 

Therefore all the cross-tenns in Eq. (^6) disappear, and we are left wibh 

2 

i (v'- j u!) Q (v + j u) = -4r ; (v,2+ u,2) 2 -   - - »   -   ^ _, i  i m 

But' 

i=l 

■o 2ir 
2   i L   2/il r^    2/ i 

v    —   ■♦• U    —1 

1=1       * 

(59) 

and Eq. (^8) can be rewritten as 

2 
1 'JT    A^ 
w V Q V =  w 2-""~  ir 

n 
A2 'T  w V I V 
^  

(60) 

whore   n = 2 ^T.    The oxproasions in Eq.   (60) are recognized as discrote 

forms of th" operations porformod by a square-law device and integrator. 

Wo conclude then that the optimum detector for the case of white noiue 

ideally filtered to the band of signal frequency uncertainty is a square 

law device followed by an integrator. 

Output SNR 

To calculate the output SNR, we shall consider the square-law device 
; 2 

in its continuous form, i,e., the detector output is taken to bo I v  (t) dt , 

The derivation of R is straightforward, and the result is given hero, the 

details boing left to Appendix A. 
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Howover, wo noto that 

V^ 
sine I (^ - tj) *{ (57) 

i\  -t ) - k-i 

Therofore all tho cross-terras in Eq. (56) disappear, and we are left with 

i (v'- j u') 0 (v + J u) - -^ y (vA u.2)        ($8) 

But' 

E 
i-l 

v2U.Uu2(i 
2^r 

kv2i (59) 

and Eq. (58) can be rewritten as 

1 ]
K A w v Q v = —K 2 —   ir 

n 

i=l 

A  'T —ly V I V (60) 

whore n = 2 ^T, The expressions in Eq, (60) are recognized as discrote 

forms of tho operations performed by a square-low device and intogrotor. 

Wo conclude thon that the optimum detector for tho caao of white noiso 

idoally filtered to the band of signal frequency uncertainty is a square 

law device followed by an integrator. 

Output SNR 

To calculato the output SNR, wo shall consider the square-law device 

in its continuous form, i.e., tho detector output is token to be j v (t) dt , 

The derivation of R is straightforward, and the result is given here, tho 

details being left to Appendix A. 
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R ~ 
AS2 

16 n^N c 

o 

T 

dx 

$T 
(61) 

dy   sine  (x - y) 

0 

This is plotted in Fig. 2 as a function of £T,    It is seen from the 

figure that the curve for R vs. q) T  for this case of ideally filtered white 

noise is identical in form to the corresponding curve for the case of 

broadband white noise^ except for a constant vertical displacement.    This 

result is misleading since it seems to indicate that one can improve upon 

the performance of the optimum detector derived for the broadband white 

noise case simply by pre-filtering the noise to the band of signal 

frequency uncertainty.    However, this cannot be the case in view of the 

known optimality of LR detection.    The cause of this discrepancy lies in 

the assumed nature of the ideal pre-filtering operation.    In deriving 

Eq.   (6l) it was assumed that the filter WuS operating in a steady-state 

condition,  i.e., that the received signal was  applied to the filter a 

long time before the start of the observation period (0,  T ).    .'his, 

however, is a false  assumption,  since the received signal is available 

only during the period (0, T).    An analysis which takes into account 

the transient operation of the filter is rat .or involved and is taken up 

in Appendix B.    The output SNR for such a short-term filter followed by 

a squarer and integrator is derived but is not easily evaluablo.    However, 

it can be shown that for large and small values of 0T  respectively,  the 

SNR behaves as does R for the original case of optimum detection in 

broadband white noise. 

It is therefore conjectured that the optimum procedure for the 

detection of n steady sine wave of unknown frequency in n background of 
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white noise consists of a filtering of the received signal to the band 

of signal frequency uncertainty followed by squaring and integration, 

V. Conparison with the Optimal Detection of a Gaussian Signal 

It is of interest to compare the results obtained thus far with the 

case of optimal detection of a gaussian random signal in a background of 

gaussian noise. The question to be answered is whether or not a periodic 

signal with unknown frequency is more detectable than a gaussian random 

signal of the same average power having a power spectral density over 

2 
the same band of uncertainty. The results of Tuteur are applicable 

in this case, 

Adapting Tuteur's Eq, (13) we find that the operation to be performed 

by the LR detector to detect a gaussian signal in gaussian noise is 

^n t{v) 1 ' -1  -1 
2 I £ £ £ v K ^P K ""v + Bias terms (62) 

where P is the covariance matrix of the signal. If the power spectral 

density of the signal is flat over the frequency band ("Q - ? > % + ^ ) 

A2 
with total average power y }  then 

TT sine 0 (t. - t.) cos w (t. - t.) 
2    ^ v i   .1     ox i   y 3 

But this is seen to be identical to the matrix    (s s/ 

Section IV.1.    Therefore 

derived in 

(63) 

1   ' -1     -i 
*■ v K   P K _v 1 VI /      \  v-1 

2 1*     (**)A   I 

x v G v (eh) 
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where   T    = -    is the time required for a signal to travel the spacing,  d, 
B C 

i.i. 
between the two hydrophones when the speed of sound in water is c. R (x ) 

is the a.c.f. for th noise arriving at any one hydrophone. Wc note that 

Eq. (65) simply represents the average value of R (t ) over an interval 

2T wide centered at r. s 

! 

I 

Thus the optimum detector for the case of a gaussian signal with a 

flat spectral density over a given frequency band is identical to the 

detector derived in Section IV.1 for the case of a sine wave whose 

frequency has a flat p.d.f. over the same band. The same gaussian noise 

background is assumed in e ch case. The output SNR, R, is also the 

same in the two cases  See Tuteur, Eq. (20) . We therefore conclude 

that if the desired signal is known only to lie between certain upper i 
and lower frequency limits, there is no advantage to be gained from f 

knowledge that the signal is periodic rather than random and gaussian. 

In either case, the optimum detector consists of a filter matched to | 

the signal band followed by a squarer and integrator 

VI. Detection with a Hydrophone Array 

We have up to this point considered signal processing with a single 

hydrophone. Let us now assume that an array of M hydrophones is used 

to detect the desired signal in a three-dimensional Isotropie gaussian 

noise field. For such a noise background, it can be shown that the cross- 

correlation function for noise outputs from two soparated hydrophones is 

given by T+T 

I    t      1 

(6*) 

I 
i 

I 
I 

i 

I 
I 
ä 

I 
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The various signal and noise vectors v, s and n are now taken to be 

nXM-dimensional vectors and the matrices K, ^s s \, G and I are token 

to be nXM-dimensional matrices. It will be assumed that the array is 

being steered "on tarcet" so that the matrix /s s ) will consist of an 
N  S 

MXM matrix of identical nXn submatrices. 

Broadband White Noise Backgrounds-Hydrophone Array 

If the noise background is white with finite power and essentially 

infinite bandwidth, it can easily be shown that the noise cova:i.ance 

matrix K is diagonal. Assuming the desired signal to be as described 

in Section IV, i.e., a steady sine wave whose phase and frequency are 

described by p.d.f.'s, the matrix (s s\    is an MXM matrix of nX n 
v  S 

submatrices, each identical to the form in Eq. (hS),  derived for the 

case of a single hydrophone. The nXM matrix Q for the array case is 

given by 

G = i <s s') (66) 
"   r v   s 

and is itself a matrix of identical submatrices. 

Thus it can easily be verified that the optimum detector sums the 

signals picked up at the M hydrophones, and performs the quadratic 

operation v Q v where v is now the output of the summer and G is 

identical to the form originally derived in Section IV.2 for the single 

hydrophone case. We have previously conjectured that the continuous 

i- 
form of the operation v G v consists of a filtering to the signal 

Ö Q 
band (co - w , w + x ) followed by squaring and integrating. 

o d '    o     2 

The nX M matrix K Q is 

-S-jf^i). (67) 



A-2i4 

It oan readily be verified that for the array case 

iT  JT 

h'^-^f' dx|  dy sine (x 

h     '0 

y) (68) 

In other words, for the case of broadband white noise, the output 

signal-to-noise ratio with the array of M hydrophones is n times that 

with a single hydrophone let. ..pare with Eq. (55) 1. 

Note on the Threshold Analysis 

In obtaining the form of the optimum detection operation from Eq, (7), 

for the ease of a single hydrophone, we assumed that threshold conditions 

prevailed, i.e., the input SNR was low and higher order terms in the SNR 

could be neglected. In terms of the specific problems treated this 

implied for the single hydrophone case 

Ac «   1 (69) 

It should be noted that for the M-array case, the equivalent 

oondltion is that 

MT 

2K 
« 1 (70) 

I 

I 

1 
I 

I 
1 

! 

VII. Output SNR with a Sub-optimum Incoherent Detector 

One may wish to conpare the performance of the optimum incoherent 

detector with some sub-optimum detector. For that purpose we next shall 

derive a compact expression for the output SNR, R, of a general incoherent 

detector which forms the test statistic 

d(v) = v F v (71) 
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The matrix F is an nXn matrix in the single hydrophone case^ which we 

i 
shall consider first. The quantity v F v can be thought of (in 

continuous form) as the squared output of a filter- which is not necessarily 

time-invariant, subsequently integrated over the observation time of the 

received signal. The interpretation of F can be made as follows: 

Let the discrete form of the filter weighting function be an nXn 

matrix H, and let the output of the filter be the vector Y ^ H v . 

i i 
The squared and summer filter output is then v H H v , Thus, letting 

we have 

vHHv   =   vFv 

F   =   H H 

(72) 

(73) 

Now the output SNR is to be found. The calculations of the required 

averages are similar to those in deriving Eqs. (26), (27) and (29), The 

following can easily be shown: 

/d(v))  = tr /a SSF  + tr (K F) 
N "'S+N    l\-"VS~/ 

<d(v)) =•• tr (K F) 

.2\ 
|d(v)J ) - 2 tr (K F)2 + tr2 (K F) 

Oh) 

(75) 

(76) 

Thus, from Eq., (25), 

tr /a s\ F 
s il 

2 tr (K F)' 

(77) 

\ore  explicitly, Y, = ^ H, .V, . If the filter is to be realizable, 

then Y, = 0 for i < j , for any v. This is assured if H.  = 0 for i < j , 

tnu: H is "lower diagonal" in such a case. 
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Let us now use Eq,  (77) to calculate the output SNR for the case 

oonaidered earlier, i.e., the case of a steady sinusoid whose frequency 

lies somewhere in a band Q rad/sec wide centered at w .    Let us assume 
0 

the noise is white and strictly cut-off at W rad/sec. In such a case, 

<i 3}   is given by Eq, (145) as before. Here F simply represents the 

square-and-add operation and so 

Since the noise is white. 

N I 

(78) 

(79) 

. 

Thus, from Eq.  (77) we have 

nA1* A1* 

8ir 8nN 

where n « — , It is clear of course that the result Eo, (80) does not 

depend in any way upon the uncertainty about signal frequency. However, 

Eq. (80) can be rewritten in a more interesting forms 

(80) 

W > ß (8:) 

Q. 
This is seen to be identical to Eq, (55a) except for the factor P» . Thus 

we can summarize: 

If the background noise is white over a band (0, W) , the optimum LR 

detector consists of a filter matched to the band of signal frequency 

uncertainty fi, where W > 2 , followed by a squarer and an integrator. 

If, however, the received signal is not filtered before detection but is 

simply squared and integrated, the output SNR derived for the optimum 

detector must be multiplied by tin factor - . 
w 
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VIII. Sub-optimum Detection--Hydrophone Array 

If an M-hydrophone array is used, the operation equivalent to v F v 

in Eq, (71) consists of summing the outputs from the M hydrophones and 

then using the summer output in the quadratic form v F v. 

If the background noise is broadband v/hite, and the array is steered 
i 

on target, it can easily be verified that the output SNR is 

MV 
R = 

IlN 2 !22 
0 

fr UJT (82) 
w/ 

iy. Conclusions 

There is evidence that the low frequency portion of received signal 

spectrum contains certain coherent signals which may be used as a basis 

for detection. It had been hoped that advantage could be taken of the 

periodic nature of these signals to perform somo form of coherent 

detection and thereby enhance signal detectability. However, the lack 

of precise knowledge about the frequency of the periodicity is a stumbling 

block. If the frequency is known only to lie within certain upper and 

lower limits, then the optimum detection procedure is an incoherent one, 

i.e., an energy measurement of the received signal. Coherent detection 

is, generally speaking, cross-correlation with a replica of the desired 

signal. However, effective cross-correlation requires at least a 

knowledge of the frequency or fundamental frequency of the signal. This 

in a nutshell is why the optimum detection scheme for the case we have 

considered is not a coherent scheme, 

A comparison of the case of a sinusoidal signal of unknown frequency 

and nhase with the case of a gaussian random signal shows that in either 

case the optimum LR detector has the same form, i.e., a purely incoherent 
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detector. This indicates that a periodic signal of unknown frequency is no 

more detectable than a gaussian random signal of the same power confined to 

the same frenuency band. This is a surprising result, but ono which follows 

quite clearly from a straightforward application of the general theory of 

optimal (minimum average risk) detection as outlined by Middleton, -r 

Even though the unknown signal frequency may have a value anywhere in 

a given region of uncertainty^ it seems intuitively that one should be able 

to make use of the fact that in the observation interval at hand, the signal 

frequency takes on but one of its possible values for the entire interval,       .[ 

With this idea in mind, a detection scheme has been considered in which the       ? 

overall band of signal frequency uncertainly is split up into a number of 

sub-bands. The SNR is thus enhanced in one ".ub-band, that which contains 

the signal. Each of the sub-bands is then processed by means of an incoherent 

threshold detector and a final decision is made on the basis of the outputs 

of the sub-band detectors. Preliminary results indicate that this scheme 

wculd perform better than the "optimum" detector derived in this report. 

Presumably, the same improvement would be exhibited if the signal were not 

a pure sinusoid but a narrow-band signal whose cente:' frequency was not 

known exactly. Ir such a case the width of each sub-band would be chosen 

approximately equal to the width of the narrow-band signal. 

This result brings up some serious quetitions regarding the supposed 

optimality of LR detection, since this arbitrary band-splitting operation 

is not dictated by the results of the general optimun. detection analysis. 

Therefore the general detection problem, as analyzed from the Bayes' 

risk point of view, is presently being re-rxamlned. This investigation, 

as well as the analysis of the band-splitting scheme, will be subjects 

of later reports. 
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Appendix A 

Square Law Detector I--Id9al Filtering 

band-pass filter squarer 

Figure A-l  Square Law Detector 

The detector outputs i.e., the test statistic to be used in the 

threshold comparison, is 

T 

x2(t) dt (A-l) 

where 

x(t) =   V(T) h(t - T) dT 

j» 

and h(^) is the weighting function for a rectangular filter mstched to 

the band of signal frequency uncertainty. The (-0°) value of the lower 

limit in Eq. (A-2) implies that the filter is operating in a "steady- 

state" condition. The background noiso contained in v(t) is assumed to 

be flat over a broad band. 

The output SNR will be taken as normalized deflection-squared, as 

before. The necessary averages are calculated as follows: 

(*> +N     \J 
dt r 2(t) + 2 3(t) n^t) + n„2(t) 

'S+N 

(A-2) 

— T + N Q T 
2 

where n„(t) is  the  noise at the  output of  the  filter, 
r 

(A-3) 

A-2 9 
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1 
T 
1 

= N i^T 
0 

T       T \ 

(Z
2)    =// dt /  da   n/iDn/io) 

N 
•0    ;o 

T       T 

N 

dt I da   6iF
2(t) ^(aj) 

0       0 
T        T 

dt I  da 

0       JQ 

N 2ß2 + 2 R2(t - a) 
0 v 

(A-I4) 

1 
I 

No
2A2 + 2/ dt  I da ^(t - a) 

0       0 

(A-^) 

where \{^) ia the a.c.f, for np(t). 

Thus, 

R   = A^T2 
(A-6)  y—Tj 

8 1 dt I do   ^(t - o) 

0        0 

For the rectangular filter with flat response over    ("Q " ^ >  % + ^) * 

Mt - a) = No^ sine J (t - a) cos cojt ~ a) (A-?) 
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R A^T2 

1 f 

8 No
cQt / dt / do sine" J (t a) cos6 co (t - o) o ' 

0        0 

r-J AS2 

14 No
2ß2 / dt j do sine2 J (t - o) 

0       0 

or. 

(A-8) 

(A-9) 



Appendix B 

Square Law Detector II—Short-Term FiltGring 

In this Appendix we assume that the pre-detection filter cannot operate 

on the infinite past history of the received signal v(t) as was assumed in 

the previous Appendix See Eq. (A-2) . Instead, the filter is allowed to 

weight only as much of v(t) as is available at any time in the observation 

interval (0 < t <T) . With this restriction, x(t) now takes the form 

Again, 

x(t) = I V(T) h(t - x) dT (B-l) 

I 

Now, 

z = I x (t) dt 

0 

T 

z = I dt 

0 

dx V(T) h(t - T) 

J 

da v(a) h(t - a) 

T   t   t 

dt / dT / da V(T) v(a) h(t - x) h(t - a) 

o   0   0 

(B.2) 

(B-3) 

I 

j 

The output SNR R is required. We obtain the appropriate averages 

as follows: 

S+N 

/ 
T   t 

dt / dx 

H) 0 

s ( T ) + n ( T) h(t -- T) j da \a{a)  + n(o) h(t - a)y 

^S+N 

A-32 
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T t       t 

* I dt    I dx I da /s{x) s(aj)   h(t - T) h(t - a) 

0 0        0 

t      t 

+ / dt    I da   R('i - a) h(t - x) h(t - a) 

0 0 

T       t       t 

(z) « / dt I dT I do   R(T - a) h(t - x) h(t - a) 

o     o    Jo 

Thus, 

T       t       t 

dt 

"0       0       0 

T       t       t 

fy     - (z\   = / dt / dr / da   /B{X) s(a)) h(t - x) h(t - a) 

(B-U) 

(B-5) 

(B-6) 

:i 

Lotting 

<S(T) 8(a))   =   RS(T~ a) (B-7) 

we can write 

<tH " ^ 

T       t       t 

dt /  dx / da   R (T > a) h(x) h(a) 

0       0        0 

(B-8) 

Calculating the variance of z given that only noise ia present, 

T     r   t t 
f 

dx V(T) h(t - T) I do v(o) h(t - a) 

"0 0 

T        r    S S 

<'.2).' I dt 
N     \J 

0 

ds 

0 

07]    v^) h(s  - T])  /  d? v(S) h(s  -  I) 

0 



A-3h 

T       T       t       t       3       s 

I dt 1 ds / dT I da / dq | d? (V(T) v(a) vfr) v(?j> 

'0      "0       '0       '0       '0        0 

h(t - T) h(t - a) h(s - T)) h(s - g) (B-9) 

If the noise before filtering is white, 

<v(x) v(y^ = n Nn 5(x > y) (B-10) 

If the noise is also gaussian, 

T  T r 

CL)  = n2N 2 / dt / da 
N 

d'vh2(t - T) / dr) h2(s - r]) 

0  0 

+ | dT h(t - T) h(s - T) / da h(t - a) h(s - a) 

0 0 

2
M 

2 
n N o 

t t 

+ | dx h(t - x) h(s - T) do h{t -  a) h(s 

"O 0 

,2 

a) 

T   t 

dt I dx h2(t - T) 

'0   0 

2
M 

2 
+ n N 

o 
dT h(t - T) h(s - T) 

(B-ll) 

I 
I 
I 
I 

f 
I 
I 
I 
I 
I 

^ 
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Thus, 
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(B-12) 

■-   . 
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List of Symbols 

A = signal amplitude 

{ßCt.)» = a vector 

<B(t. ,t, )i = a matrix 

c = velocity of sound in water 

d = distance between two hydrophones 

d(v) = test statistic in sub-optimum detection 

6(x) = Dirac delta function 

A = sampling interval 

F = coefficient matrix of sub-optimum quadratic form 

f(v/o) = conditional probability density of v with no signal present 

f(v/s) " conditional probability density of v with signal present 

0 » bandwidth of signal frequency uncertainty in cps 

0 a phase of desired signal 

G = coefficient matrix of optimum quadratic form 

H » filter weighting matrix 

h(T) = filter weighting function 

h(t. ) = sample of Hilbort transform of n(t) 

1 = identity matrix 

K = noise covariance matrix 

K~ = element of inverse covariance matrix 
ij 

^(v) = likelihood ratio 

M = number of hydrophones in an array 

m = number of possible discrete signal freq jncies 

N = noise power 

N = noise spectrum level in watta/rps 
o 
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n = number of time samples 
I 

n = noise vector 

n(t) = noise signal in continuous form 

ripCt) = noise signal after filtering 

0(x) = "at most on the order of x" 

P(x. ) = probability function 

p(x) = probability density function 

R = output signal-to-noise ratio 

R (T } = autocorrelation function of noise at a hydrophone 
:: 

R(T,T ) « cross-correlation function for noise signals at 
two different hydrophones 

I 

B-ii) = a.c.f. of noise after filtering 

S = set of unknown signal parameters 
.: 

s » desired signal vector 

i 

s = transpose of vector s 

s(t) = desired signal in continuous form 

T = observation time of received signal 

x = time delay between two hydrophones 

u = sampled Hilbert transform of v(t) 

v = received signal vector 

v(t) = received signal in continuous fonr 

W a noise bandwidth in rps 

x(t) = received waveform after .filtering 

Ü -  bandwidth of signal frequency uncertainty in rps 

to = signal frequency 

co = center of band of signal frequency uncertainty 

Y = filter output in sub-optimum detection 

y(t) = received waveform after squarer 

z, = integrator output 



det A = determinant of matrbc A 

\ )  =  statistical average, conditioned on presence of 
N 

( )     = statistical average, conditioned on presence of both signal 
S+N  and noise 

A-38 

noise only 

tr A = trace of matrix A 

Abbreviations 

a.c.f, = autocorrelation function 

LR = likelihood ratio 

p.d,f0 = probability density function 

SNR = signal-to-noise z'atio 

! 
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I. Introduction 

The determination of the bearing of a plane-wave random signal in a 

background of Isotropie random noise, by means of so-called "split-beam" 

systems of transducers, has been popular because a null output is 

obtained when the transducers are steered "on target," Such systems 

are of great value in automatic tracking applications, 

i However, the random fluctuation of the output of such systems 

causes uncertainty in the determination of the bearing of signal source« 

It is the purpose of this report to determine general mathematical 

relations for the computation of the bearing uncertainty, and from 

these relations to determine system parameters which optimize or 

minimize the bearing uncertainty. 

The problem of determining bearing uncertainty has been treated 

in Reference 1, but the analysis is somevrhat restricted in that the 

system is not quite as general as the one considered here. The problem 

of minimizing bearing uncertainty has not been treated previously, but 

the analysis is parallel be that done by Eckart in Reference 2, There 

also seems to be an error in Reference 1 in the analysis concerning 

multi-element arrays, 

II. Definitions and Assumptions 

The system to be analyzed is shown in Fig. 1. The outputs of each 

set of M transducers from an array of 2M transducers are summed and 

each sum is then fed into a linear filter. The frequency response 

functions of the filters are related in that there is a 90 phase shift 

between the response functions at all frequencies. The filtered sums 

B-l 
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s (t) + n, (t) 
1 O1 x 

2  O 
s2(t) + n2(t) 

M  O 
'M^) 

+ V^ 

M + 1 Q 
SM+l

(t) + Vl(t) 

M + 2 0 

2M O 

SM+2(
t)+ 'W*) 

SCMC*) 
+ ^M(t) '2M 2MV 

Phase-Shift T ». .. T  „ 
SuM,er3 Networks  ™ Multiplier ^"^ 

and Filters bilWera '1"8r 

I 
I 
I 

T 

I 

Fig. 1  Typical Split-Beam System 

are then passed through infinite clippers, the results are multiplied and 

the product is averaged by means of a low-pass filter. The average output 

of the low-pass filter as the array is steered gives the bearing response 

pattern for the system. 

Following are the major assumptions inherent in the analysis: 

1) The transducers in Lhe array have omnidirectional characteristics. 

2) The array of 2M transducers is a linear array, with equal spacing 

between transducers. 

3) The signal in the medium is a plane wave. 

k) The noise is Isotropie in the medium and the cross-correlation 

between the noise components of the outputs of different transducers is 

nssumod to be zero. 

, 

1 
I 
i 



,'■ 

B-3 

^ 

! 

i 

5) The sigral and noise are Gaussian and stationary, and signal and 

noise are independent. 

6) The spectral density of the signal need not be the same as that 

for the noise at the output of any transducer. 

III. Bearing Response Pattern 

Since the signal is a plane wave, the array is linear with equal 

spacing between transducers, and the transducers are omnidirectional, 

the relation in Eq. (1) holds for the signt component from the i 

transducer. 

si(t) = sjt -(i - I)T| (1) 

The time T is the spatial tme delay of the signal between adjacent 

transducers. When T =• 0 , the bearing of the signal is perpendicular 

to the line of the array. 

The outputs o: the summing amplifiers in Fig, 1 are given by 

M 

St) * ^ . 
i-1 

M 

t - (i - 1) T + n^t) 

VB(t)aE  S] 
k«! 

t - (k + M - 1) T nM+k
(t) 

The autocorrelation function of vA(t) and vR(t) may be expressed 

in terms of the autocorrelation functions of the signal and noise at any 

transducer by means of the following relations, 

(2) 

(3) 
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B-h 

M  M 

R (T) = ^ ^E is1[t - (i - l)rl + ^(t)^^ - (^ - 1)T +T]+ n^t + T) 

T + (i - *)T 

1=1 tr=l      I 

M M 

(—>    L_i   t 

1=1 ^=1 

M  M 

i-l ^=1 

+ M R (T) 

+ MNp (T) 
n 

R (T) = R (T) 

V    VA 

Ox) 

(5) 
i 

In Eq. (1;) S and N are the signal and noise powers at each transducer 

respectively, and p and p are the corresponding normalized autocorrelation 

functions. 

The spectral densities of v, and v,, are the Fourier transforms of 

the corresponding autocorrelation functions.  In Eq, (6) &„■<&)  and "(") 

are the normalized spectral density functions for signal and for noise 

respectivjly at every transducer. 

i 

•Kir The transform pair given below will oe used for relati ig spectral 
densities and correlation functions throughout this report. 

0(a)) 
,-jwt 

: R(x) E~
J
^- dT 

_oo 

R(T) -  I G(co) eJ"T dco 

-CO 
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03 

pg(T + (i - ^T)  e"Ju^ dx 
•JOT 

+  MN   ^      /pn(T)   e-^dT 

M     M 

hi 
i=l ^1 

^ 

S £   £g3H e^(i-/)r + MN gn(co) (6) 

Gv (") a G    (co) (7) 
B VA 

The filter frequency response functions are related in that there is a 

90" phase difference between their phase angle at every frequency.   Since 

simple filter realizations are desirable, for the initial analysis it is 

assumed that 

HA(jco) = j(4c HB(ja)) (8) 

where k is an arbitrary proportionality constant. 

The spectral densities of the outputs of the filters are found in 

Eqs.  (9) and (10). 

2 
Gv  («) = Ä2 H  (jw)     G    (co) (?) 

XA D VA 

2 
Gv  (") K    Hn(jw)j     G,  (co) (10) 'BVJ   'I       v 

The development i/i Eqs. (l) through (10) is preliminary in 

determining the bearing response, which is the average value of the 

output of the multiplier, y. The value of y is dependent on the time 

delay T, and has been found to be 
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Y = - arcsm J      v. 

V \{0)] 
■7x7? 

(n) 

Ths quantity R  (0) is the cross-correlation function of x. ft) and ^(t) 

at T 
H
 0 . The cross-correlation may be evaluated by first writing the 

convolution integrals which yield x. (t) and ^-.(t). 

CO 
M r. 

h^-Z   3i t - (i - 1)T - a j + ^(t - a)l hA(a ) da (12) 

00 

xB(t)" E / fi^ - ^+ M - ^-^ - p]+ Vk^ - ß)f v^dß 

k=i ^ i L '        J 
(13) 

In Eqs, (12) and (13) hA(a) and h_(ß) are the weighting functions of the 

filters with frequency response functions H. (jco) and HB(jco) respectively. 

The cross-correlation at T 
B 0 is defined by 

Since there is no correlation between the noise outputs of different 

transducers, the noise terms disappear when Eqs, (12) and (13) are 

substituted into Eq, (II4). Thus 

M     M 
CO        cc? 

i=l k=l 
_C0       ^00 

K 
co       a 

i-1 k=l   I 

t -  (i - 1)T - a 

h. (a) Y(^) da d6 

a - ß - (k - 1 + M)T 

t-(k + M-l)T-ßi   )( 

hA(a) ^(B) da dp    (15) 

I 

I 

I 
JV' 

JX>       «PD 
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The matrix F is an nXn matrix in the single hydrophone case, vhich wo 

shall consider first. The quantity v F v can be thought of (in 

continuous form) as the squared output of a filter which is not necessarily 

time-invariant, subsequently integrated over the observation time of the 

received signal. The interpretation of F can be made as follows: 

Let the discrete form of the filter weighting function be an nXn 

•x- 
matrix H, and let the output of the filter be the vector Y ^ H v , 

i t 
The squared and summer filter output is then v H H v , Thus, letting 

we have 

t   i i 
vHHv   -   vFv 

F   =   H H 

(7?) 

(73) 

Now the output SNR is to be found. The calculations of the required 

averages are similar to those in deriving Eqs. (26), (27) and (29),   The 

following can easily be shown: 

/d(v)) "  tr l/s  s )F  + tr (K F) 
N "'S+N    n  'S / 

<(d(v)) = tr (K F) 

(7^) 

(75) 

Kv)] 2 tr (K F)2 + tr2 (K F) (76) 

Thus, from Eq, (25), 

tr (s s') F 

2 tr  (K F)' 

(77) 

'Mor e explicitly, Y, = ^ H. V . If the filter is to be realizable, 

hen Y. - 0 for i < j , for any v. This is .assured if H  = 0 ^or i < J , 

tnu.i H is "lower diagonal" in such a case. 



MmimaHMS&wsa*t^^^mmmmumBMmmmMmmmM«nmvtMtMaaaa 

A-26 

Let us now use Eq, (77) to calculate the output SNR for the case 

considered earlier, i.e., the case of a steady sinusoid whose frequency- 

lies somewhere in a band ft rad/sec wide centered at w . Let ua -»saume 
o 

the noise is white and strictly cut-off at W rad/sec. In such a case, 

(is)   is given by Eq. (k$) as before. Here F simply represents the 

square-and-add operation and so 

Since the noise is white. 

N I 

(78) 

(79) 

Thus, from Eq. (77) we have 

R nA_ 

8nir 
WT 

W T 

(80) 

where n =   , It is clear of course that the result Eo. (80) does not 

depend in any way upon the uncertainty about signal frequency. However, 

Eq. (8o) can be rewritten in a more interesting form: 

i 
«. j 

T 

W > Ö (81) 

This is seen to be identical to Eq, (55a) except for the factor « , Thus 

we can summarize; 

If the background noise is white over a band (0, W) , the optimum LR 

detector consists of a fjIter matched to the band of signal frequency 

uncertainty Q,  where W > Q , followed by a squarer and an integrator. 

If, however, the received signal is not filtered before detection but is 

simply squared and integrated, the output SNR derived for the optimum 

detector must be multiplied by the factor 
W * 

I 
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VIII , Sub-opt:bnujn Detection—Hydrophone Array 

If an M-hydrophone array is used, the operation equivalent to v F v 

in Eq. (71) consists of summing the outputs from the M hydrophones and 

then using the summer output in the quadratic form v F v. 

If the background noise is broadband white, and the array is steered 

on tbrget, it can easily be verified that the output SNR is 

R MV 
m2 a2 

0 
w x 

(82) 

IX. Conclusions 

There is evidence that the low frequency portion of received signal 

spedtrum contains certain coherent signals which may be used as a basis 

for detection. It had been hoped that advantage could be take^ of the 

periodic nature of these signals to perform some form of coherent 

detection and thereby enhance signal detectability. However, the lack 

of precise knowledge about the frequency of the periodicity is a stumbling 

block. If the frequency is known only to lie within certain upper and 

lowor limits, then the optimum detection procedure is an incoherent one, 

i.e., an energy measurement of the received signal. Coherent detection 

is, generally speaking, cross-correlation with a replica of the desired 

signal. However, effective cross-correlation requires at least a 

knowledge of the frequency or fundamental frequency of the signal. This 

in .i nutshell is why the optimum detection scheme for the case we have 

comidered is not a coherent scheme. 

A comparison of the case of a sinusoidal signa;. of unknown frequency 

and phase with the case of a gaassian random signal shows that in either 

a  the oütimum LR detector has the same form, i.e., a purely incoherent cas 
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detector. This indicates that a periodic signal of unknown frequency is no 

more detectable than a gaussian random signal of the same power confined 'to 

the same freouency band. This is a surprising result, but one which follows 

quite clearly from a straightforward application of the general theory of        1 

optimal (minimum average risk) detection as outlined by Middleton. 

Even though the unknown signal frequency may have a value anywhere in 

a given region of uncertainty, it seems intuitively that one should be able 

to make use of the fact that in the observation interval at hand, the signal 

frequency takes on but one of its possible values for the entire interval. 

With this idea in mind, a detection scheme has been considered in which the 

overall band of signal frequency uncertainty is split up into a number of 

sub-bands. The SNR is thus enhanced in one sub-band, that which contains 
li 

the signal. Each of the sub-bands is then processed by means of an incoherent 

threshold detector and a final decision is made on the basis of the outputs 

of the sub-band detectors. Preliminary results indicate that this scheme 

would perform better than the "optimum" detector derived in this report. 

Presumably, the same improvement would be exhibited if the signal were not 

a pure sinusoid but a narrow-band signal whose center frequency was not 

known exactly. In such a case the width of each sub-band would be chosen [ 

approximately equal to the width of the narrow-band signal. 

This result brings up some serious questions regarding the supposed 

optimality of LR detection, since this arbitrary band-splitting operation 

ia not dictated by the results of the general optimum detection analysis. 

Therefore the general detection problem, as analyzed from the Bayes ' 

risk point of view, is presently being re-examined. This investigation, 

as well as the analysis of the band-splitting acheme, will be subjects 

of later reports. 
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Appendix: A 

Square Law Detector I--Ideal Filterir;6 

band-pass filter squarer 

Figure A-l  Square Law Detector 

The detector output, i.e., the test statistic to be used in the 

threshold comparison, is 

■ 

where 

z = I x (t) dt 

0 

t 

x(t) = I V(T) h(t - T) dT 

(A-l) 

-JCO 

(A-2) 

and h(T) is the weighting function for a rectangular filter matched to 

the band of signal frequency uncertainty. The (-0°) value of the lower 

limit in Eq. (A-2) implies that the filter is operating in a "steady- 

state" condition. The background noise contained in v(t) is assumed to 

be flat over a broad band. 

The output SNR will be taken as normalized deflection-squared, as 

before. The necessary averages are calculated as follows: 

s2(t) + 2 s(t) n^t) + nF
2(t) 

— T + N ^ T 
o (A-3) 

where iv,(t) is  the noise at the output of the filter. 
v 

k-29 
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(i ijM^H 
4 a,     , 

I    i 

N AT 
o 

T       T 

(^ Jjitjio ^M^M] 

T        T 

dt I da   (nF
2(t) tip2{a» 

0       0 
T       T 

dt / do No
2ß2 + 2 R2(t - a) 

(A-ii) 

i 
: 

J :■ 

S I        ■: 
li       ! 

No
2S2T2 + 2l dt / da ^(t - a) 

0       0 

where IL^T) is the a.c.f, for n„(t). 
if r 

Thus, 

R 
A^T2 

T—r 
8 I dt I do   Rp^t - o) 

-0    Jo 

(A-?) 

(A-6) 

For the rectangular filter with flat response over    (w   - » , w   + j) > 

RpCt - a) = No^ sine J (t - 0) cos w (t - o) (A-7) 
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Thus in this case 

I 
I 

or, 

R A^T2 

r^ 

 T T ,  

8 No
2i22 1 dt / da sine2 j) (t 

0       0 

A^T2 

a) cos   CD (t - a) 

1 T (A.8) 

h No
2S2  1 dt / da sine2 J (t - o) 

0       0 

1     „^                             A^I2                                 | 
i           "                                                        T                  _ 

h  1 T 
16 n2No

2    / dx    / dy   sinc2(x • -y) 

J   J 

(A-9) 

ii 



Appendix B 

Square Law Detector II—Short-Term Filtering 

In this Appendix we assume that the pre-detection filter cannot operate 

on the infinite past history of the received signal v(t) as was ass\3.aied in 

the previous Appendix See Eq. (A-2) . Instead, the filter is allowed to 

weight only as much of v(t) as is available at any time in the observation 

interval (0 < t <T) . With this restriction, x(t) now takes the form 

'am, 

x(t) = | V(T) h(t - T) dT 

z » I x2(t) dt 

'0 

(B-l) 

(B-2) 

Now, 

z = I dt 

'0 

dx V(T) h(t - T) 

0 

da v(o) h(t - o) 

0 
T   t   t 

dt 1 ch: / da V(T) v(a) h(t - x)  h(t - a) 

"0   0   0 

The output SNR R is required. We obtain the appropriate averages 

as follows: 

(B-3) 

S(T) + n(T) h(t - T) I do s(o) n(o) h(t - o)^ 

^S+N 

l. 
: 

i i 
i 
i 

":'': 

1 I 

1 
: 

i 

I 
I 
I 
i 
I 
i 

I 

A-32 



A-33 

dt 

0 

t       t r 

dx I da ^S(T) s(a])   h(t - T) h(t - a) 

'0       0 

t t 

+ / dr   / da   R(T - a) h(t - T) h(t - a) 

'O        0 

T       t       t 

/z\ = / dt I dT I do   R{T - a) h(t - %) h(t - a1 

0      0      t) 

(B-li) 

(B-0) 

Thus, 

T       t       t 

^L - ^ [o)) h(t - dt / dT / da ^(T) s(a)) h(t - T) h(t - a) (B-6) 

'0      '0       0 

Lotting 

<S(T) 8(a)^   =   RS(T- a) 

we can write 

<i„ - ^ 

V 

T       t       t 

dt / dT/ da   R3(T- a) h(T) h(a) 

'0       0        0 

(B-7) 

(B.8) 

Calculating the variance of z given that only noise is present, 

2N 
(z2) « /    / dt 

0 

dx V(T) h(t - T)     da v(a) h(t - a) 

J 
"O 0 

T     r   s s 

dT]    V(TI) h(3 - T)) /  d^v(^) h(s - \) •      ds 

J 
0 0 0 

/ 
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T 

« / dt 

i 
t       t 

I dT I da/six) 3{op   h(t - T) h(t - a) 

J0      0 

t        t r 

Thus, 

+ 1 dr       do   R(T - o) h(t - T) h(t - a) 

0        0 

?       t       t 

(z) =  I dt I dT I da   R(T - a) h(t - T) h(t - a) 

0       0       0 

T       t       t 

(z))     - (z^   = 1 dt / dx / da  <i{r) s(o)) h(t - T) h(t - a) 

0      0      0 

(B-li) 

(B-50 

(B-6) 

, 

Lotting 

we can write 

<i» - <is 

/B{X) aia))   =   R0(T- a) 

T       t       t 

dt I  dx /  da   Ra(T - a) hC-c) h(a) 

0        0        0 

Calculating the variance of z given that only noise is present, 

T     r   t 

N 
dt    i  dx V(T) h(t - T)     do v(o) h(t - o) 

0 0 

T 

ds 

0 

dr]    v(rj) h(a  - T])  I d£ v(^) h(s ■- K) 

'0 0 
/ 

(B-7) 

(B-8) 

: 
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T       T       t       t       s       s 

dt / ds / dx / da / dq  / d? (V(T) v(a) V(TI) V(?)) 

i J   J  j  J   x ^ 
0       0        0       0        0       0 

h(t - T) h(t ~ a) h(s - TI) h(s - g) 

If the noise before filtering is white, 

A-3.|4 

(B-9) 

i 
f 
I 

<v(x) v(yj> = n No 6(x - y) (B-10) 

If the noise is also gaussian, 

(z } ° n 
N 

T       T 

0        0 

r 

dTh2(t - T) / dt] h2(s - T)) 

+  I dx h(t - T) h(s - T)  / da h(t ~ a) h(s - a) 

0 0 

2
M 

2 
n N o 

t t 

+  / dx h(t - T) h(s - T)   / da h(t - a) h(s 

0 0 

2 

a) 

T        t 

dt   I dx    h2(t - T) 

0        0 

2» 2 +    n N o d-r   h(t - T) his - T) 

(B-ll) 

I 

t 
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I 

Thu3{ 

R 

T       t       t 

dt I d-r / da   RS(T - a) h(T) h(a) 

L 0       0       0 

T       T 

2n N      I dt  I ds 
°J    I 

0        0 

f d-r   h(t - T) h(s - T) 

A-35 

(B-12) 
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List of Symbols 

A = signal amplitude 

B(t, )> = a vector 

I B(t.,t. )l = a matrix 

c = velocity of sound in water 

d = distance between two hydrophones 

d(v) = test statistic in sub-optimum detection 

5(x) * IMrac delta function 

A = sampling interval 

F "  coefficient matrix of sub-optimum quadratic form 

f(v/o) = conditional probability density of v with no signal present 

f(v/s) = conditional probability density of v with signal present 

0 = bandwidth of signal frequency uncertainty in cps 

^ a phase of desired signal 

G = coefficient matrix of optimum quadratic form 

H =  filter weighting matrix 

h(T) = filter weighting function 

h(t.) = sample of Hilbcrt transform of n(t) 

1 = identity matrix 

K = noise covariance matrix 

K?. = element of inverse covariance matrix 

^(v) = likelihood ratio 

M = number of hydrophones in an array 

m = nui.iber of posdiblc discrete signal frequencies 

N = noise power 

N = noise spectrum level in watts/rpa 
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: 

i 

I 

n = number of time samples 

n = noise vector 

n(t) = noise signal in continuous form 

nF(t) = noise signal after filtering 

6(x) => "at most on the order of x" 

P(x. ) = probability function 

p(x) = probability density function 

R = output signal-to-noise ratio 

j i 
R (T ) = autocorrelation function of noise at a hydrophone 

R(T,T ) « cross-correlation function for noise signals at 
two different hydrophones 

R_(T) = a.c.f, of noise after filtering 

S = set of unknown signal parameters 

s "  desired signal vector 

i 
s = transpose of vector s 

s(t) = desired signal in continuous form 

T = observation time of received signal 

T ■ time delay between two hydrophones 
s 

u a  sampled Hilbert transform of v(t) 

\ = received signal vector 

v(t) = received signal in continuous form 

W =» noise bandwidth in rps 

x(t) = received waveform after filtering 

fl = bandwidth of signal frequency uncertainty in rps 

to = signal frequency 

to = center of band of signal frequency uncertainty 

Y = filter output in sub-optimum detection 

y(t) = .eceived waveform after squarer 

z = integrator output 

■< 
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det A = deterroinant of matrix A 

\ )  ~ statistical average, conditioned on presence of noise only 
N 

(   )     a  statistical average, conditioned on presence of both signal 
S+N  and noise 

tr A = trace of matrix A 

Abbreviations 

a.cf. = autocorrelation function 

LR ■ likelihood ratio 

p.d.f. = probability density function 

SNR = signal-to-noise ratio 

■ 
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I.    Introduction 

m 
The determination of the bearing of a plane-wave random signal in a 

background of Isotropie random noise, by means of so-called "split-beam" 

systems of transducers, has been popular because a null output is 

obtained when the transducers are steered "on target." Such systems 

are of great value in automatic tracking applications. 

However, the random fluctuation of the output of such systems 

causes uncertainty in the determination of the bearing of signal source. 

It is the purpose of this report to determine general mathematical 

relations for the computation of the bearing uncertainty, and from 

these relations to determine system parameters which optimize or 

minimize the bearing uncertainty. 

The problem of determining bearing uncertainty has been treated 

in Reference 1, but the analysis is somewhat restricted in that the 

system is not quite as general as the one considered here. The problem 

of minimizing bearing uncertainty has not been treated previously, but 

the analysis is parallel to that done by Eckart in Reference 2, There 

also seems to be an error in Reference 1 in the analysis concerning 

multi-element arrays. 

II. Definitions and Assumptions 

The system to be analyzed is shown in Fig. 1. The outputs of each 

set of M transducers from an array of 2M transducers are summed and 

each sum is then fed into a linear filter. The frequency response 

functions of the filters are related in that there is a 90° phase . hift 

between the response functions at all frequencies. The filtered sums 

B-l 
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M 

s1(t) + ^(t) 
1    0 

J32(t) + n2(t) 
0- 

yt) + nM(t) 

M + 1    0 

M 4- 2    0 
sM+2(t)+ nI4+2(t) 

2M  O 
s?M(t) + n2M(t) 

Phase-Shift   T ».  .. T     „ 
Supers     Networks       ^f1^^   Multiplier   L°w:faas 

andmters   CliPPers mter 

+  P- H4(jw) x 1. 
+1/ 

*TX 

(X 
^M 

0) 

Fig. 1  Typical Split-Beam System 

are then passed through infinite clippers, the results are multiplied and 

the product is averaged by means of a low-pass filter. The average output 

of the low-pass filter as the array is steered gives the bearing response 

pattern for the system. 

Following are the major assumptions inherent in the analysis; 

1) The transducers in the array have omnidirectional characteristics, 

2) The array of 2M transducers is a linear array, with equal spacing 

between transducers, 

3) The signal in the medium is a plane wave. 

h) The noise is isotropic in the medium and the cross-correlation 

between the noise component? of the outputs of different transducers is 

assumed to be zero. 

1 
* 

I 

I 
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5) The signal and noise are Gaussian and stationary, and signal and 

noise are independent, 

6) The spectral density of the signal need not be the same as that 

for the noise at the output of any transducer. 

Ill, bearing Response Pattern 

Since the signal is a plane wave, the array is linear with equal 

spacirg between transducers, and the transducers are omnidirectional, 

th 
the relation in Eq, (1) holds for the signal component from the i 

transducer, 

't -(i - I)T| (1) 

The time T is the spatial time delay of the signal between adjacent 

transducers. When T =■ 0 , the bearing of the signal is perpendicular 

to the line of the array. 

The outputs of the summing amplifiers in Fig. 1 are given by 

M 

Si(t) a S1 

'*' ■ z 
i«l 

M ( 

t - (i - 1) T + n^t) 

v^E s-. 
k-1 

t - (k + M - 1) T «W^ 

The autocorrelation function of v.(t) and vR(t) may be expressed 

in terms of the autocorrelation functions of the signal and noise at any 

transducer by means of the following relations. 

(2) 

(3: 
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M  M 

R (T) = 7 f E 
h i=l ^=1 L 

(i - 1)TJ + n^t) 

R 

M  M 

L L 
1=1 1=1 

M  M 

T + (i - ^)T + M R (T) 

S ^ ^Pgh^ U - W + MNpn(T) 

i»l ^=1 

t - (^ - 1)T +T + n^(t + t) 

(U 

R (T) = R (T) 
VB    VA 

tf) 

In Eq, (li) £ and N are the signal and noise powers at each transducer 

respectively, and p and p are the corresponding normalized autocorrelation 
s n 

fjnctions, 

The spectral densities of v. and vR are the Fourier transforms of 

the corresponding autocorrelation functions.      In Eq.  (6) gfca) and gn(w) s       n 

are the normalized spectral density functions for signal and for noise 

respectively at every transducer. 

i 

! 

! 

•»L The transform pair given below will be used for relating spectral 
densities and correlation functions throughout this report. 

0(co) 
^ 

R(T) t'^ dx 

J 

00 

R(T) -        0(0))  eJUJ    dco 
JcaT 

JX 
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i=l  ^=1 -cc- 

CO 

+ MN  ^     IpJ'T)  r^dT 
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'S 

M     M 

Z thM*Mui)**mg*M 
i=l ^1 

(6) 

1 

G    (w) n G    (co) 
VB 

(?) 

The filter frequency response functions are related in that there ia a 

90° phase difference between their phase angle at every frequency.   Since 

simple filter realizations are desirable, for the initial analysis it is 

assumed that 

\W = j** HB(jco) 

where k is an arbitrary proportionality constant. 

The spectral densities of the outputs of the filters are found in 

Eqa.  (9) and (10). 

(8) 

G    (w) = Ä2
|H  (jco)     Gv (co) 

XA D A 

Gy (co) -  |H (^)|     G    (c) 
Xg A 

(9) 

(10) 

The development in Eqs,   (l) through  (10) is preliminary in 

determining the bearing response, which is the average value of the 

tput of the multiplier, y.    The value of y is dependent on the time ou 

delay T. and has been found to be' 
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y = - arcsm 
n 

R        (0) 

T p7? 
i\(0) %(0)1 

B "6 

(11) 

The quantity R   (0) is the cross-correlation function of x.(t) andXpft) 

at T 
B 0 . The cross-correlation may be evaluated by first writing the 

convolution integrals which yield x.(t) and Xn(t). 

xA(t) 

M 

L 
i 

CO 

(I 
ii. 

t - (i - 1)T - a + ^(t - a)l hA(a) da (12) 

M 

k=l 

t - (k + M - 1)1 - ß Vk(t-ß) hß(ß)dß    (13) 

-c-1 

In Eqs,  (12) and (13) hA(a) and hB(ß) are the weighting functions of the 

filters with frequency response functions H. (^w) ar.d H_(jw) respectively. 

The cross-correlation at   T =■ 0   is defined by 

R        (0) - E xA(t) ^(t) ilk) 

Since there is no correlation between the noise outputs of different 

transducers, the noise terms disappear when Eqs,   (12) and (13) are 

substituted into Eo,   (lli).    Thus 

CO 00 

M    M     r 

\^ -ft] /Ef 1 A^ i^l k-1 i   i   I 
t - (i - 1)T - a 

hA(a) hB(?} da dß 

t-.(k + M-l)T-ß X 

E a - - (k - i + M)T hA(a) hB(ß) da dß    (15) 

i-1 k-1 _P3      _(0 
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Since CO 

a - p - (k - I + M)T 

Equation (1%) becomss 

,(«) t^ c-W e-^(k-i+K)T dcü (:i6) 

_oo 

H     M 
05 CO 03 

Rx ^ a S E   E        gS
(w) e^(k-i+M)T d.      hA(a) e^ da      h^ß) e'^dß 

hh i3! k=l 

M     M 
CO 

J» -03 

S E   M    HA(3£Ü) "B^^ g3(u)  ^^ ^ (17) 

i=l k=l JX 

From Eq.  (8), Eq.  (I?) becomes 

M     M      r 2 
RxJo^"sE E p^vH gs(-)e^(k"i+M)Td. 

A^ i=l k=l i 
(18) 

The denominator terms of Eq,  (11) may be determined by performing 

inverse transformations on Eqs.  (9) and (10). 
00 

Rx  (0) -     l  k2u2|Kr(;1co)j     Gr  (to) d/^ (19) 

-00 

00 

r,    i2 
R    (0) = ^O)      G     (co) da) 
xB

v   '        /   i  Bw  /1      v. 
(20) 

_co 

Substitution cf the results in Eqs.   (6) and  (?) into Eqs.   (I?) and  (20) 

yields 

(co)  c dco 

M   M     r 
Rx (0) D S L   L       ^" |HB(j") 

^ r 0 

2 2 
+ MN        k to HB(j")|     gn(cü) dw (21) 

_P0 
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M     M 
DO 

\M'sl E   !vH SsM^(k-m)r 
dec 

k=l m=l 
~00 

CO 

•;- MN %M g (a) dw (22) 

JC» 

The bearing response results from the combination of "Sqs« (11), (l8), 

(21), and (22) 

V     M 

i 

1 

I 

1 

L L M^ HB  gs6 J 

y = - - arcsin^ 

dco 

i=l k=l ieo 

M     M 

ZE 
1=1 ^=1 

00 00 

k2.2 

B 

»CO 

00 
M   M    r 

EE f HB 

2 

es  
e 

kal m=l J^ 

g^^-^d^f  /k2co2|HBf gndtt 

nl/2 

T72 

X 

> 

HB     gnda> 

\ 

(23) 

The expected result of   y = 0 when   T >= 0   is easily confirmed from Eq,  (23). 

If M is sufficiently large, the double summations in Eq.   (23) reduce to 

and 

M     M 

EE- 
i=l 1*1 

M     M 

,j  \      ' ^ M   sine     
2n 

{2k) 

P    C"1   -ico{k~i+K)T^     / ,.„,       ,    .      „-x.,2,    2ü)Mr )      y   e J  v ^: (cos coMT -  j smcoMT) Maine   -w- 

i=l k-1 

where sine x =■ sin nx 

nx 

17 

(25) 

(26) 

f 
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Substitution of the results of Eos. (21;) and (25) into Eq. (23) yields 
r 

00 

r   •■ 
CO 

2 coHT Hn| g   sin wHT sine   -rf- do) 

v = = — arcsin/ 
»CO 

IV 

a HB|   gg sine   -^ dco + ^5 I w jHn|  g„ dw 
B   &n 

-CO -CO 

rT 

ex? c» 

X 

-.1/2 

2 
gß sine   T- do) + ^      HB g   dw &n 

-DO „oo 

(2?) 

S 1 
Furthermore, if   w < < t? > Eq.   (2?) reduces to 

/ a   HB(jco)   g  (co) sin coMT   sine   ^— dco 

2 SM     J» 
n  N 00 

CO H^jw)!    gn(») dco 

■OO 

VT 

^(jw)   gn(co) dco 

_oo 

177    (28) 

The result in Eq, (28) is not unduly restricted, since threshold signal 

detection is important. For computational purposes, it should be 

remembered that g (co) and g (co) are normalized spectra and that 
3       n 

normalization reouires 

g3(uJ) dw °  / gn(u)) du = 1 (29) 

_00 ~r,o 



IV. Bearing Uncertainty 

The relation between target bearing 0 and the time delay T is 

B -10 

T = - sin 0 
c 

where d is the separation between transducers, c is the speed of wave 

propagation in the medimn, and 0 is the angle between the direction of 

wave propagation and a plane perpendicular to the line of the array. 

It has been shown that the bearing uncertainty aQ is given by 

dyl 
dT       * 

dT 
dö 

4=0 Q=ol 

c 
daz 

dy 
dT 

T=0 

(30) 

(31) 

f 

I 

In Eq. (31), a is the standard deviation of the output z(t) of the 

split-beam system, shown in Fig. 1. For the computation of a . it will 

S   1 
be assumed that w « ^ and that only noise X noise terms make significant 

contribution to its value. 

We have 

V») H2(jw) dw 

-00 

1/2 

(32) 

I 

where G  (w) is the spectral density of y(t) and H  (joi) is  the frequency 
y z 

response function of the low-pass filter.    Siuce the bandwidth of the 

low-pass filter is much narrower than the bandwidth of G (^o), 

1/2 

Gy(0)  |   IMJOOI     du (33) 

7 
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The integral in Eq.  (33) is simply twice the equivalent bandwidth of 

the low-pasa filter for random signals 

the symbol 2üL ,    Also 

if 

if H  (0) = 1 
21 

and will be given 

%^'tn yTidT (31») 

_co 

The autocorrelation function for y(t) is defined by 

y-r) - E 'sgn xA(t) . sgn ^(t)! sgn xA(t + t) . sgn ^(t + T) . 

(3?) 

X noise terms in Eq.  (35) arc significant, 

The functions x.(t) and XgCO are not correlated so that 

If   | « «   only the noise 

R (T) sgn xA(t) sgn xA(t + x) E sgn xB(t) sgn xB(t + T) 

Ji arcsin pv (T) arcsin PX_(T) 
7 XA ^ 

In Eq,  (36) p    (T) and p    (T) are the normalized autocorrelation 
A ^ S 

functions for x.(t) and x^^) respectively.    For small values of w 

the normalized autocorrelation functions become 

(36) 

and 

PXU) 

R    (a-) 
XA 

k2«2 ^3(^00)    gn(.) e^dco 

XA I k2ü2 !L(jco)j   gfoj) dw 
IT"  'I   0n' 

2 

R   (-0     J 
f   Hn(jci))    g^(w)  c^dco 

P^   (T) a 

R    (0) r        2 
J   HB(;)uO     cn(") du 

(37) 

(38) 
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Equations (21) and (22) help to determine the final form of Eqs. (37) 

and (38). 

Combination of Eqs. (33), Oh),  (36), (37) and (38) yields a : z 

2\ 

/ CO 
r *      ,2 

\ 

arcsin 

.CD 

0) HBi gn eJ  dco 
_c» 

f  2  I2 jco HB| gndco 

arcsin 

r   2 
-1V2 

H,- gn e^'
7 dco 

03 dT 

\jsa 

HB| gn dco 

(39) 

Equation (39) can be simplified considerably if the product of the arcsin 

functions is replaced by the product of their arguments. Since the value 

of the arcsin function exceeds the value of its argument by a maximum of 

57 % ,  the use of the above-mentioned approximation will cause an error in 

a amounting to much less than 57^ because an integration process is 

involved. Thus Eq. (39) becomes 

z   n 

T -     CO 

f  2 a 
J 

-CO 

HB(ja)| 
2 

gn(a) da 

00 

f H HUP) 
2                   ? 

| gn(e)dp/e^a+f5)rdT 
_co 

1/2 

r-     CO 

-00 

' HB(^) 
2 

gn(
w) dw 

1/ '2 71 
-00 

HB(jco) 
2 

gn(co) dco 

1/2 

/ 1 « \ (ho) 

It is seen that the frequency variable, w, in the numerator of Eq, (39) 

has been replaced by a and 8 in Eq, (I4O) so that the integration over 

can be performed first. We then have 

f^(a+P)Td;- = 2n 5(a+16) (l4l) 

-co 

i = I 

i 

I 

1 
r! 

- 
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where 5(a + ß) is a unit delta function occurring at 8 - -a . Next, 

performing the integration in the numerator of Eq. (ho), ve find that the 

triple integral resolves to 
00 

f o 2 
1 a2 HB(ja)|  gn(a) KB(-ja) sUa) da 

-co 

Since   ^(Jco) and g (w) are even functions, Eq.  (UO) becomes 

^|(V1/2 

00 

Hn(^) P    (w) dw cn v 

,        00 \ 
CO 

(Ü HB(jw)    gn(w) du 

JOO 

HB(jw)   gn(cü) to 

1/2 

(J42) 

The slope of the bearing response pattern found in Eq.  (31) can best 

be deterged by differentiating Eq.  (23).   Under the restriction that 

S _1 „ « i . the double summation terms m 
UM' 

the denominator disappear, so that 

M  M 
r*1 

dT 

2 S ±=1  k=1 

V ^ (k - i + M) U' 

 ry^r« 

HT gs dco 

T=0 CO HB ^ 
_D0 

W^ 
(li3) 

HT ^n dw 

_oo 

SM 
T «1 

p 

But 
M  M 

OUi) 
^ ^ (k - i + M) a  M 

i«l k=l 

The bearins uncertainly is then found by comblninB Eqa. (U2), (U), and 

(lib) with En. (31). 
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M 1 N 

i-l 
^. 

CO 

2     u 

-CD 

11   2 
HB(^)   gn (w) dw 

1/2 

CO 

r 
radians   (I4JJ) 

J M |HB(jco)   gs(co) dco 
«CO 

In Eq,  (I45), Md is half the toi d aperture of the split-beam array, and 

SM 
-rr is the signal-to-noise ratio in either channel, after summation of the 

signals from the M transducers. The ratio of the integral terms at the 

end of Eq, {k$) yields a result with the dimensions of [rad/secj ' . 

The result without the exponent is some measure of effective system 

bandwidth. The following section deals with minimizing the bearing 

uncertainty, 

V. Minimum Bearing Uncertainty 

According to Eq. (1$) the bearing uncertainty may be decreased by 

increasing the array aperture (2 Md), by increasing the number of 

transducers inside a fixed aperture, and by decreasing the noise bandwidth 

of the final low-pass filter. However, increasing the number of transducers 

within a fixed aperture without limit does not cause a continuing decrease 

in bearing uncertainty because the assumption that there is zero correlation 

between noise outputs of different transducers is no longer realistic for 

close transducer spacing. For very close transducer spacing, the signal- 

to-noise ratio after summation no longer is represented by -«- because 

of the non-negligible cross-correlation. 

However, if the array spacing, number of transducers, and low-pass 

filter characteristics are fixed, the bearing uncertainty is still a 

function of HR(jco). The following analysis yields the optimum filter 

function, M (jw), that minimizes the ratio of the integrals in Eq, {h5). 

I 

I 
I 
I 
I 
! 

i 
! 

I 

I 

;: 

. 
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1 

InEq. (I45) HgCjw)! is replaced by  Hg (jw)  + \ Hg (jco) 

where H- (jw) is the frequency response function that provides a 
B0 

"/ \ 
stationary point for the ratio of the integrals, and HR (jcoj is any 

arbitrary frequency response function. We have 

a0^A 

2 / of 

L    -.00 

+ X Hr gn (") dw 

1/2 

00 

60 + X |gs(u)) dco 

_00 

(ll6) 

i 

For a stationary point of a0 to exist, 

da, 

dX 
X=0 

(ii7) 

Perforj'äng the operation indicated in Eq, (hi),  we obtain 

00 

6J R      du Bn 

-00 

(X> 

CO 
3, 

g    du b3 

_co 

0) 
2   ^ g      dw 

-00 

CO HB I   g3 dco 

„00 

0        (18) 

Rearranging Eq. (I48) to obtain separation of terms involving ga(co) and 

gn(co), we get 
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00 

0) HT 

JX> 
0 

Kgj   gn   dco joy 

00 

HT 

11   2 
gn   dco 

w» 

op r .     „2 
gs dW 

-<x> 

00 

CO H. B, 
_00 

0 
g3dW 

B-16 

m 

Equation (U9) is satisfied for any arbitrary ^B if 

\ 

» 

'B  2/ v gn(co) 

where k« is an arbitrary constant. 

Also 

H, 
'0 

kAW 
gs(«) 

(50) 

(51) 

The results in Eqs,  (50) and ($1) are almost identical to those 

obtained by Eckart in Reference 2,   The ratio of integrals in Eq, {k5) 

is also quite similar to the ratio found in Eq, (8) in Reference 2. 

Under the conditions given in Eqs,  ($0) and (51), the minimum 

bearing uncertainty becomes 

-rl/2 

c   SM p ,   a/2 
co 

CO 
go(w) 
-2—^1   dco 
gn(a))/ 

(52) 

The result in Eq,  (52) is also quite similar to the corresponding result 

obtained in Reference 2. 

The application and further investigation of the results in Eqs, (50), 

(51), and (52) are deferred to a later section of this report. In the next 

section, the effect of uaing a non-minimum phase network to provide the <?Q0 

phase shift between channels is investigated. The results given previously 

depend on the minimum phase assumption in Eq.   (8). 

1 - 

| 

MM 

fi 

l 

! 
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I 

VI.   Minlmun Bearing Uncertainty with Non-Minlnium Phase Filters 

In this section it will be assumed that the non-miniinuin phase 

relationship between the two filters is given by 

"A w ' 
h 

'B k$*) 

The primes are used to indicate the fact that a non-ndnimum phase 

relation holds. The 90° phase shift without change in amplitude 

characteristics can be accomplished over a fairly wide band of frequenciea 

by means of a complicated active all-pass structure. 

The analysis follows exactly the same steps taken in Sections III, 

IV, and V, and for this reason only a skeleton set of equations will be 

listed here. 

Since H, H. B 

G (Cü) - Q (co) » HT Vw) (51 

With the use of Eq.  (17) the cross-correlation between x.(t) and 

Xn(t) becomes 

M    M 

ial k^l 

Also 

R    (0) - R,    (0)~MN 

„ 'I c        -3w(k-i+M)T   ,        . HB I   gg e J v '   dec - /  j 

H 
gn(«) dco 

\ So « 

.JOO 

if f «1 

.jco(k-i+M)T dtt 

(55) 

(56) 

^x> 
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The bearing response equation for small signal-to-noise ratios 

SM 
T «1   is 

y = — arcsin^J 

M    M 

i=l k=l 

2       -jw(k-i+M)T ?     , 2       -j6)(k-i+M)T 
a      v. riw  -   / i 

J J ("B 
.0 

J 
-es 

B 
Df        f. Q6S 

00 

<- 2 

.00 

g   dko 6n 

(57) 

Equation (57) reduces to 

-._.     2 SM, 
^ s - n ¥< 

2 cüMT g   sin wMT sine   -rr dw 6s 2n 

00 ) 

'B g   dw n 
-00 

(58) 

The normalized autocorrelation functions p (T) and p (T) are 
XA       ^ 

I 
I 
I 
I 
T 
I 

l^'l 2gn(w) ^ *> 
PY (T) 

C
 PY (T) 

-00 

00 

gn(w) dco 

(59) 

_oo 

1 
I 

Thus 

"L 
r 
arcsin Px (T)i dT 

-00 

1/2 

(60) 

I 
I 
I 
i 
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I 
I 

I 

If the arcain function is replaced by its argument, we obtain the 

approximate answer        __ ,/« 

.2 ... a/2 
a ^B- vui. ; 
Z  It  L 

oo 

2i 
1. «03 

H, B gn (w) du 

CO 
/AT \ 

gn(w) dw 

J30 

The derivative of Eq. (£8) with respect to T gives the slope of the 

bearing response pattern. The "on target" slope is 

oo 

2 j co 
2 SM2     0 

ii 
HB     gg dco 

dT n   N » 
(62) 

T'=0 f 
_00 

H e   dco &n 

Substitution of the results in Eqs, (6l) and (62) yields the equation 

for bearing uncertainty 

a0 ~ Md 
'SMI"1/^ ,a/2 Lo 
IT   (6i) 

00 

K. 
B 

g^'.a.;   dCO 

1/2 

(63) 

0) 
B 

g (co) dco 

A comparison of the results in Eqs, (k5)  and (63) together with those 

in Eqs., (50) and (Si)  shows that bearing uncertainty may be ndnimized by 

setting 

2 2 
K (jco)  - H* (jco) = co 

g3(") 

gn (") 
(6li) 
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The minimum bearing uncertainty under the conditions in Eq,  (64) then 

becomes 

-1 

y 

00 

CO 
es(w) 

J       \en^/ 
0 

da) 

-1/2 

(65) 

A comparison of Eqs, (52) and (65) shows that the minimum bearing uncertainty 

under the assumption of the nonidnimum phase filter in Eq, (53) is precisely 

the same as the minimum bearing uncertainty using minimum phase processing. 

The optiwum frequency responses for the processing filters in each case are 

not the same. It can be seen from Eqs, (50), (51), and (6k) that the 

magnitude response ox^ both processing filters for the non-minimum phase 

case is the geometric mean of the magnitude response functions for the 

minimum phase case, 

VII. Results with Optimum Filter Using Physical Model for Spectra 

Physical measurements indicate that Eq, (66) is a reasonable 

approximation for the underwater noise spectral density. 

G (W) H J * 

X  + r-~ 
W 

1 0/ 

In Eq, (66) co is fairly low; say^ 1000 rad/sec. 

The signal spectral density^ generated at the source, is assumed te 

have the same shape as the noise spectral density. However, at the 

transducers the signal undergoes further frequency selective attenuation. 

The model utilized hero is that introduced by Eckart." Thus 

S     1 

(66) 

2 
-co or 

Q (co) 
3 x / (67) 

nu 
0 1 + 

CO 

CO 
0 

rm       a ■'T 

I 

E 

! 

i 

I 
I 
T 

i   ' 
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where r is the target range in kiloyards; and a is a constant whose 

11 
numerical value is 6 x 10  , For target ranges under 100 kiloyards, 

the normalization of Ö (a) is not appreciably affected by the 

exponential factor, so that 

2 
-co or 

2 
-co or 

ggfa)^ e g» 
nw 
b 1 + 

m 
w 

\  o 

From Eqs,  (^0) and ($1) the optimum miniraum phase filter response 

functions are 

Kl CB~T7T 
gn K 

1/2 
B     t 

nV2 
i + '   CO 

CO 

2 
co ar 

and 

(68) 

(69) 

K, k. co A 

gs(") 

gn (")i 

.1/2 
a co 1 + 

l   0 

1/2       oTar 

6 (70) 

where a and b are arbitrary constants. 

From Eq.  (Sh), the optimum filter response functions for the system 

with the all-pass 90   phase shifting network are 

o co 1/2 1 + co 
\   Ol 

1/2  co or 

(71) 

Equations (69), (70) and (71) are plotted in Fig. 2 for co - 1000, 

a ^ 6 x 10' ? and r « 10 kyd0 It can be seen that the optimum response 

functions have a peak value in the vicinity of the frequency at which the 

signal spectrum begins to attenuate. Due to the fact that the low 
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10 

Relative 
Response 

.1 

103 10^ 10^ 
■: 

(&       Frequency   rad/soc 

Tig.  2      Optimum Filter Response Function for   r o 10 tcyd. 
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frequency corner at UQ  = 10ÖO is practically insignificant, the peak value^ 

of the filter response functions occur at the follovdng frequencies: 

(7f0 

(73) 

ilk) 

For HB co  o (or)"1/2 max  v ' 

For HA co  - (Sar)"1/2 max  v  ' 

For 
1 

HB 
1   =3 

J 
HA 

1 3  1 ~1> 
max  2 

Table 1 gives the center frequencies and half-power frequencies for 

several values of range for 

Range 

(kyd) 

1 

10 

100 

Center frequency 

(rad/sec) 

131,000 

ia,ooo 

13,1°° 

Half-power frequencies 

(rad/sec) 

63,000 j 210,000 

20,000 j 66,000 

6,300 ; 21,000 

Table 1  Critical Frequencies for 
'B 

The minimum bearing uncertainty is obtained by substituting the 

information in Eq,   (68) into Eq.   (52).    Thus 

-1/2 

mm 

c   (SMl"1      1/2 
M   T       "I 

2 u   e 
o  2 1 -2io or 

dco 

.0 

c   (SMf1      1/2 
Ha T     "i 

-   5.16 x IQ-3 ^ 

o \l/ti 

-1 

(Ur)3/'4 

SMT*        1/2    3/14        ,, ui    '     r '      radians (75) 

■- 

■; 
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For a representative calculation, it is assumed that M ■ 25, 

c = 5000 ft/sec, d = 2 ft, üi = 1 rad/sec, r » 10 kyd, and SM/U  = 0,1 . 

The last assumption puts the signal power at each receiver 2h db below 

the noise. From Eq. (75) we get 
1 

o„ 
min 

(5.ii5 x io-
8) -J02L (io)(l)1/2(1o)3A a 35o8 x 10-^ radians 

(25) (2) 

.018 degrees 

The ^incertainty in Eq, (76) seems unusually small. In the next section, 

the performance of specific subop+imum filters is investigated, 

VIII. Results with Suboptimum Filters 

The suboptimum filter to be considered first has the frequency 

response function 
,2 

CO 1 
1 + 

N" 

HA - kjo HB 

CO 
\ 0, 

1/2 

ß^ < w ^ ^ 

elsewhere 

(76) 

(77) 

(78) 

f 

i 
1 

From Eq, (77), it can be seen that this filter provides the whitening of 

the noise spectrum as required of the optimum filter, but only passes 

signals in the frequency band from ßco. to ox,.    The effect of the general 

location and width of the pass band will be investigated in this section. 

From Eqs. (ii5), (66), (67), and (77) the bearing uncertainty is 

_c_   SM 
Md    N \ 

I/' 

^ 
2 

a)   cto 

ni 

1/2 

^ 2 
CO      £ 

—^— 
•w"ar 

(79) 

doi 

^ 
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Performing the integrations indicated in Eq,   (79), we get 

aQ*m 
SMI"

1
 1/2 (1 - ß3)1/2 ^2 

where 

and 

(Sn)1/2 c? Jl%      Ji^ f I ~|  - f o n 
1 J^ + !I'f - w 7\ 

a = (2ar) -1/2 

f (X) -d_ 
dx 

2" 
x 

1    "T 

v^ 
; 

,ic=X 

X     x2 

P(X) = -L   /  e   
T dx 

V2n j 
-X 

(80) 

(81) 

(82) 

(83) 

The functions defined in Eqs,  (82) and (83) are tabulated in References 

3 and k. 

In order to provide a comparison with the results for the optimum 

filter, Eq6   (80) is divided by Eq,   (75) to yield the ratio of the 

respective bearing uncertainties. 

3/2 

a - r) 3 1/2 m ri 

JQ min     6.3' \ a I \   a  I     2    ja/      2(0/ 

m 

For    ß « 0 ; two approximaticns are possible from Eqs,   (79),   (TD and (8I4), 

/   ,-3/2 

1.15   - 

ndn ,308 % 
3/2 

a 

% 

«   1 

»   1 

(85) 
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The minimum value of a. /aQ   occurs for a value of (xu/o very near the 
öl min M 

value at which the two approximationa in Eq, (85) intersect. 

2i 
a 

1,15 

,308, 

1/3 
le55 (ß - 0)   (86) 

i 

Substitution of the result in Eq. (86) into Eq. (8I4) yields 

nn 

min 

° 1.17 

ndn 

(87) 

If the filter has a fairly narrow relative bandwidth such that ß is 

nearly unity, then the combination of ülqs,  (75) and (79) gives the 

following approximate result for aQ /oQ     ; 
öl     min 

.667 
ox f3/2   \ 

ndn 
(l.ß)«l (88) 

The right hand wide of Eqe   (88) has a minimum value occurring at 

4   "    (1.5)1//2 =    1.23 (1 - ß) «1 (89) 

The minimum value is 

^l ^ 1/2 "    I.OI4  (1 ~ ß)"1^ 

min 'J min (1 - ß) «1 (90) 
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The figure of merit aQ /oQ        for the suboptimvun filter described in 
1  min 

Eq. (77) is plotted for three values of ß in Fig. 3. The results in Sqse 

(810 through (90) apply to Fig, 3. It can be seen that the system 

performance with the suboptimum filter is good if the value of c^./a is 

near 1,5 or, in other words, if the filter cutoff frequency matches the 

frequency at which the signal spectrum begins to fall off exponentially. 

For a fixed filter cutoff frequency, however, the relation c^/a ^ 1,5 

holds only at one value of targe0 range, and performance is not as good 

at other target ranges. 

To illustrate this, let us assume that ca. « 50,000 rad/sec and 

P - 0 . Table 2 shows values of a0 /a0   for various target ranges, 
yA Vn 

! 

1    min 
r    (kyd) Va 

3.0 

1.18 

LO 

1 

10 

100 

.55 

l,7ii 

5.5 

Table 2  Figure of Merit for Various Target Ranges 

The aecond suboptimum filter to be investigated has the 'reqaency 

reapcnse function 

Kn(j") 

1 +  J 

1 + 
CO 

j 
w 

30,000 

30,000; 
1 +   J 

Cti 

i45,ooo 
1 + j 

GO 

60,000/ 

(91) 



B- 28 

i    i 

^ i.l x  10 V 
I/' 

3    !■, rfo--a-icr   in ley  ui' ./.bu:'„mun STötem Onu  as a 
hmrtion or Normal!-«a Filier Upper nutoff  Frequency 
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Also 

HA(»   n   k jw HB(j(o) (92) 

:> 

The expreasicn in Lq, (91) is a realistic approximation to the filter in an 

existing system.    Combining Eqs,   (kS),   (68), and (91), we obtain the equation 

for bearing uncertainty 

CTo2^ m 
SM I"1     1/2 

IT)  v 

00 
-.1/2 

w   do 

^00 1 + 
w 

\ 3C000 

2r 

1 + 
CO 

lüfooo] 

^r 
(    co 1 r\Wm 

i? 

/ . 

00 

ii ■ 
CO      6 

•öxlO"11©^ 
dco 

^» 1 + 
CO 

30000 1 + 
CO 

ism i + 
CO wm 

(93) 

Ji. If the substitution   co = 10 u   is madej, Eq,  (93) becomes 

^,   c    SM, 
ao2^- ffilT]    "L 

1 ^ Vs 10-6 

6 . u   du 

11/2 

JX> 1 + hr 
21' 

3M  LXMII^ 1 + u i * fe) ] 

u    e 
.6xlO~11M2r 

du 

1 + u ^ 
1 + u 

113 
K 

i + 
u 

Ti 

i9h) 

The integrals in Eq, (9k) have been determined numerically for 

different values of r. For the extreme values of r, the following 

approximations hold; 

a  ^ 2.^ x irr8 ^ 
1/2 

ui. ■  radians for r « 1 kyd (05) 

and 

oQ ^r 8.95 x 10 5  S''^ c  I Si'i I"1   I/2   ^ ■      r      - ~ ir^n , ^ rrr -er-   oi ' radians  for r » 100 kyd 

(96) 
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The results of the numerical analysis are shown in Fig, h,  in which the ratio 

of the bearing uncertainty for the suboptiraim filter to that for the optimum 

filter is plotted versus target range. The approximate ratios for extreme 

values öf r are obtained by combining Eqs, (9$)  and (96) with Eq- (75)* 

and 

CT0 
 £—^ ,1^7 r-Vu    for r «1 kyd     (97) 
a0 
min 

 2 ^ 1 /1 „ ir,-3 j/k I.6I4 x 10"J r' 
a0 , for r » 100 kyd   (9Ö) 
min 

Figure k shows that the minimum value of the performance ratio is 

approximately 1.03 at a range of 3.3 kyd. The performance ratio is less 

than 2 for ranges from 20 kyd to less than 1 kyd. Thus the present 

design should certainly be adequate for bearing determination purposes. 

IX. Conclusions 

Reference 1 contains a result for bearing uncertainty for narrow 

bandpass split-beam systems. If HB in Eq. (63) takes on the form of 

an ideal narrow band-pass filter, the result checks favorably with the 

correspondinf, ;esult in Reference 1. However, the result in Eq, (63) is 

smaller by approximately 20^ than the answer in Reference 1, simply 

because the latter analysis does not contain an approximation for the 

arcsin function. In Section IV of this paper, the arcsin function was 

approximated by its argument to allow simplification of Eq. (39). 

For other forms of 
1 

i L the approximation causes the results in 

Eqs, (16)  arid (63) to bo low by approximately 20^. 
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The minimization of Eqs, (L£) and (63) by choosing an appropriate form 

for Hß produces results nearly identical to those in Reference 2 simply 

because the integrals in Eqs, (US)  and (63) are nearly identical to those 

in Reference 2, Actually^ in demonstrating that the proper choice of 

Hg produces a stationary point for aQ, it was never proved that the 

stationary point is actually a minimum. This consideration is somewhat 

academic, however, since the suboptimum systems treated in Section VIII 

always produce bearing uncertainties which are greater th MI those for the 

optimum system. 

The calculation of a typical minimum bearing uncertainty in Section 

VII for a range of 10 kyd yields the extremely small uncertainty of .018 

degrees. The investigation in Section VIII shows that an existing system 

at ranges of 10 kyd should have a bearing uncertainty about 1.3 times that 

of the optimum system. Actual data seem to indicate that bearing errors 

in automatic tracking systems are many times greater than 1,3 x .016 <*  ,023 

degrees. Of course, poor estimates on this author's part of the number 

of active transducers, average separation^ signal-to-noise ratio, etc., 

may certainly contribute to the low value calculated. 

However, another phenomenon may contribute largely to target bearing 

error. For split-beam arrays used in automatic tracking systems, a steady 

bearing error exists if the target has an angular velocity relative to 

the array. This steady error is inversely proportional to the loop-gain 

of the tracking system and, in turn, the loop-gain is dependent upon the 

signal-to-noise ratio as well as the target range. It is well known that 

the signal-to-noiae ratio nt the transducers varies in a random fashion 

with time because of signal fading. The random variation of signal-to-noise 

I 
I 

I 
I 
I 
! 

! 

I 

i 

I 
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ratioj and thus of loop-gain, can cause the "offset error" to vary in a 

random fashion, the variation possibly being many tines greater than the 

bearing uncertainty computed in this report. Certainly the phenomenon 

should be quantitatively investigated. In some cases the random variation 

of the offset error may cause the automatic tracking system to lose the 

target. 
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I. Introdujction 

| An earHar report dealt with the problem of detecting a weak, 

directional Gaussian signal in a very much stronger isotropic Gaussian 

1       noise field. It compared the performance of a likelihood ratio detector 

with that of a standard power detector and indicated that some advantage 

could often be gained in principle by use of likelihood ratio techniques. 

I       However, in the cases of practical interest investigated, the attainable 

improvement appeared to be too small to warrant the increased complexity 

I       of instrumentation. This raises two questions: 

1) Are there situations of practical importance in which large 

gains can be made through use of likelihood ratio techniques? 

2) Can one find suboptimal instrumentations that closely approximate 

the likelihood ratio detector in performance but are sufficiently simple 

to justify their use in situations where only moderate gains can be 

expected? 

This report considers the second problem. Specifically, it shows 

that for the types of signal and noise spectra discussed in the earlier 

report the standard power detector preceded by an Eckart filter is such 

2 
a suboptimal instrumentation. In the light of Bryn's results it is of 

course not at all surprising that the likelihood ratio detector formally 

reduces to the proposed instrumentation for the special case of zero 

correlation between the noise disturbances at different hydrophones. 

Progress Report Mo. 3, May 1963. 

0 
F, Bryn, "Optimal Signal Processing of Three Dimensional Arrays 

Operating on Gaussian Signals and Noise," J.A.S.A. 3i-i, Ho. 3, March 
1962, pp. 209-297. 
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II. Output Signal to Noise Ratio of Povrer Detector with Eckart Filter 

Consider the system shown in Fig, 1, The quantity of ultimate interest 

hydrophone 
array 

Eckart 
fi2 ter 

■y—[Squarer 
y-. 

Low pass 
filter 

Fig. 1 

is the output signal to noise ratio, the ratio of the change in average 

output resulting from the appearance of a signal to the rms output 

fluctuation. Throughout the discussion the array is assumed to be 

steered on target. 

If the weighting function of the Eckart filter is designated by w(t), 

the time function y^(t) at its output is given by 

y2(t) =1 dr W(T) ^xi(t - x) (1) 

0     i=1 

where x, (t) = s(t) + n (t) , the sum of the signal and noise disturbances 

received by the i  hydrophone. The output y-(t) of the squarer is then 

CO 

y3(t) -| dx W(T)/ da W(O) 

M  M r 
i=l 3=1 

(t - T) + n, (t - T): 3(t - o) + n,(t - a) 

I 
I 

(2) 
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! 

Hence the average output of the low pass filter assumes the form 

CO CO 
r M  M 

E^) = E(y3) = dTw(T) daw(a)^ ) pt - T)+^.(t - T)|s(t - a)+n .(t - a)j 

0 

r M  M 

= | dx W(T)I da V7(a) '  )    R(T-a) + Q. .(T-a) 

-[       1=1 j-i 
(3)J 

R(T) is the autocorrelation function of the signal and Q. (T) is the 

cross-correlation betv;een the noise received at the i  and j  hydrophones. 

In obtaining the last form of Eq. (3) use has been made of the assumption 

that signal and noise are statistically independent and, have mean values of 

zero. 

The increment in DC output resulting from the appearance of a signal 

is clearly 

A(DC output) = M  dx W(T) da w(a) R(T - a) 

0      0 

Expressing R(T) in terms of the signal spectrum 3(co) 

R(T) = |  | S(to) e      dw 

(ii) 

<6) 
_co 

one obtains 

A (DC output) 
r ii-   | du S(OJ)| dr W(T) e       | do w(o) e 

0 0 

T duj 3 (u)) H(W) (6) 

The bar indicates  an averaging operation over U.u   random parameters 
ol' Lhe noisn. 



where 

.jüiO 

H(ü)) » / da w(a) e 

0 

is the frequency response function of the Eckart filter. 

2 
The next step is to compute the output variance D (7. ), As in 

Report No. 3 the low pass filter will be defined as a device whose 

output at any instant of time is the average rf its input over the 

past T seconds. The corresponding weighting function is 

h(t) 

1 
T 

0 < t 

elsewhere 

If one assumes,  still following Report No, 3, that T is large compared 

to the correlation time of y,^ the desired output variance is given by 

Cli 

(7) 

(8) 

! 

D2(/a)=i R3(a) - R3(oo) da 

_«i 

R (a) - R^(o;)) is the autocorrelation function of y^t) - E y-(t) 

i.e., of the fluctuating component of y,,. 

In cases of practical interest the input noise power is generally 

far greater than the input signal power. Hence a good approximation is 

obtained by considering only the contribution of the noise to R<v(a). 

From Eq. (2) 

M  M  M  M 

V°> -Z I L I 
i=l j<L h=l k=l 

dT W(T)| do V7(a)/ dp w(p)| dy w(y) 

or 

=  n, (t - r) n.(t - a) n, (t + a - p) ri, (t + a - y) (10) 

lee Report No, 3. tqj. (39) and (I4O). 
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Recalling that n. (t) is a Gaussian random process one can write 

n^t-x) n (t-o) r^Ct + a-p) r^{t + a~v) = ^.(^-a) Q^CP-V) 

I 

I 

I 

+ CL.Ja+T-p) Q.,_(a +a-v) + Q,,.(a+T- y) Q., (a+ a-p) 
jK IK jK in 

(11) 

The first term ■ " Eq,   (11) r    -s not contain a.    Upon substitution 

into Eq,  (10) it leads to the DC      iponent R-C03).    The two last terms 

of Eq,   (11) clearly make equal contributions to Eq,   (10),    Hence 
CO 00 00 

M   M   M   M r r r 

R3(a) - R3(co) «2^   YJ   YJ   E     ^ W(T)1 dp w(p) ^h^^"^   da w(a)    X 

i=l .1=1 h=l k=li I K 

dy w(y) Q.k(a+ cr-y) 

-i2 
M     M    i^ r 

)j )_, I ^ w(T)| dP W
(P) Qih(a+T-p) 

1"= 1 h=11 i 

Thus from Eq,  (9) 

00 
r 

D2{yk) ■ | U 

_oo 

M     M 
CO 

12 

Y    YJ    MT W(T)| dp w(p) Q.h(a+T-p) 

i=l h=l i 

Now uolng Parseval's theorem 

(12) 

(13) 

j 
D
2
^)"!-! i I'x-) du 

_oo 

CU) 
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where 

G(co) 

"J 
—     oa e 

-CO 

O) c» 
.     II     M    f r 

2^   ^> dTw(T)    dp w(p) Qih(a + T - p) (15) 

If one designates the cross-spectral density corresponding to Q., (T) by 

G
ih(w), i.e., 

00 

r      -jwa 
Gih(W) = ijdae Qih(a) 

-CO 

it becomes possible to rewrite Eq, (15) in the following form. 

(16) 

ir- of     ^r     "^r -3"(^-p) 
'(") = -)  )  dT W(T) e   dp w(p) e     da e 

1=1 h=l -* ^ 

Qih(a + T-p)   (17) 

I 

Using Eqs. (7) and (16) this can be reduced to the very simple expression 

2 M  M 

G(W) = |H(cc)| ^ ^Gih(M) (18) 

i=l 3=1 

Thus G(u)) is identified as the power spectrum of y«, and Eq, (lit) becomes 

2 

D ty^ = f  dw 
it 

H(co) 

_üo 

M  M 

L ^0ih(") 
i=l 1=1 

(19) 

i 
I 

Combining Eqs.   (6) and (19) one obtains  the output signal to noise ratio 
CO 

2 

A (DC output) 

VTV    / du S(ü)) H(u) 

_co 

D(y Ü 
S^n dco H(w)| 

_■...' 

;    G..  (w) 
i_j    /1J   ihv   ' 
i-1  i-l 

17^ 
(20) 
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I 
I 
l 

1 

Equation (20) makes no special assumptions concerning the linear filter 

which converts y. to y«« ^f the filter is indeed an Eckart filter as 

initially stated, then 

H(ö) IM. 
r  -2 
N(w)J 

(21) 

where N(w) is the power spectrum of the noise received by each hydrophone, 

Substitution of Eq.  (21) into Eq.  (20) yields 

00 

VTV 
A (DO output) 

D(y|i) 

dw 

•J:» 
N(co) 

n2 

2V^ 

«> MM 
S^) 

dco 

„03 
N>) 

1=1 3=1 

T372 
(22) 

If the cross-correlation, and hence cross-spectral density, between 

the noise received at different hydrophones is zero, then 

Gih(CÜ) B < 
N(co) 

for   i / h 

for i = h 
(23) 

In that case 
00 

VTM   Ida) 

A (DC output) 

D(yli) 

-00 LN(w). 

r 
2Vn1< h\ 

-oo         I 

SM 
N(co)_ 

w (2ll) 

This is identical with the output signal to noise ratio of the likelihood 

ratio detector under the same assumptions. See Report Ho. 3, Eq. (32).l 

Thus the instrumentation of Fig, 1 is equivalent to a likelihood ratio 

detector if there is no noise correlation from hydrophone to hydrophone,' 

This can also be seen from Bryn, 0£, cit., Fig. k and associated 
discussion. 

a 
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If there is noise correlation from hydrophone to hydrophone, it becomes 

necessary to compute the cross-spectral densities G., (w). Assuming a 

spherically Isotropie noise field, 

T-KC. 'ih 

Q^-O 
2T. 

Q(a) da (25 )J 

ih 
x-^r ih 

Q(a) = QJ•(0) , the autocorrelation function of the noise received 

at each hydrophone, ^-u = ^-v/0 }  where d., is the distance between the 

ith and ht'h hydrophones and c is the speed of sound in water. Using the 

symbol u(x) to denote a unit step function at the origin, one can rewrite 

Eq. (25) as follows. 

CO 

v^= 
2T.,      j 

Q(a) 

ih 

u(a-T + T,. ) - u(a-T-T    )| da       (26) 
ih ih' 

i 

-co 

Now Fourier transforming 

OT CO 

Gih(co) = -J- 1    | dT e ^      | da Q(o) 
2T 

u(a-T + Tih) - u(a-T-T4Vl) I ih' 
ih 

CO 

J30 

da Q(a) e 
■ JÜXJ -ja)(T-a) 

dx e 
2TIT 

ih 

u(a -T+ T.. ) -u(a-T-x 
ih 

-00 

2rtT.. 
ih 

da Q(a) e 
■ jaxj 

Tih 
-lOK 

dx e 

oo 
ih 

nx 

-icüo/sin tax., 
1      '  do Q(c) e        ' lh 

ih to / 
a» 

See ivc.iort I!o.  3,  £q.   (60), 

ih^ 

(27) 



Hence 

Gih(co) = N(w) 
sin ccrr., 

ih 

uf 
ih 

C 9 

(28) 

* 

Substitution of Eq, (28) into Eq. (22) yields 

m 
i 

5 

I 

MDC SH^Ü o il/l M
2 

D^) ?Vn 

dco 

_co 

s^" 
N(w). 

sm OJT 
M     M 

i=l j=l     ""ih 

ih 

ox. 

21 
(29) 

A case of considerable practical interest, and one analyzed in some 

detail in Report No, 3; is that of signal and noise spectra sufficiently 

similar in shape over the frequency range containing most of the signal 

power so that one can write 

S((ü) 

N(ü)) 
< 
N 

for -a < a) < w 
o —   -  o 

Oof- 
0 for   |Cü| > Cü 

£  and J\f are the total signal and noise power respectively. Substitution 

of Eq. (30) into Eq, (29) leads to the expression 

.i 

A (DC output) a l-\[l   M2 $_ 

D(y,) 1U N 

2co 

M  M 

i=l h=l 

sin CJT ih 

ih 

^ 
(31) 

It is interesting to observe that actual spectra S(a)) and N(w) are 

immt'terlal so long as their ratio remains constant. 

An equivalent, assumption is that —i—i - — for all co, but that only 

the frequency range -^ < u < o  is being processed. 
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III. Results for a Linear Array with Equally Spaced Elements 

If the receiving array is linear and its elements are equally spaced, 

one can write 

Tih o 
d 
c (32) 

"      ! 

rj   i 

where d is the distance between adjacent hydrophones.    The double sum in 

the denominator of Eq,  (31) can now be reduced to a single sum, 

M     M      .   I .      . I ^ Er-l    sin 1 -  h CUT 

i=l h=l     wlh i=l h=l    r 

M     M     ,    V 
NT1 r sisl ^ih 

03V h  COT 
(33) 

With the change of variable    i - h =^     this becomes 

M-l 

E ' 
M     M 
r-i   r-i   sin "^j^ 

1=1 h=l ih ^=1 

sin ton: 

loit 

Hence 

dco 

M     M     .      _ r-i c—T   sin WT,, 
\ \ in 
/_. L 
i=l h=l ih -co 

M-l sin lore 
M + 2 ;    (M -  -0 

LJ 

M 

tOK 

2 uM2 + 8&y (M - £ )| 

CO 

+ h 

t=l 

b    M-l M-] 

dco; 

sin ^cor 

^cmr 
dco 

Ok) 

^ (M -  e)(M - k> 
sin ton   sin kcorr 

o o 

-co £=1 k=l 
^ccrr koiT 

o 

(35) 

Substitution of Eq, (35) into Eq, (31) yields an exact expression for 

output signal to noise ratio which is, however, not very convenient from a 

computational point of view. The difficulty lies in the need to evaluate 

IL 



I 

I 
i 
! 

1 

! 

c»u 

the last integral of Eq.  (35) between finite limits.    Simple bounds on this 

integral can be set by observing that the integrand satisfies the 

inequality 

M-l M-l 

0 < V   ^ (M - 0(M - k) 
t*l k=l 

sin ^COT   sin km 
 o o 

o o 

M-l M-l 

1=1 k=l 

M -^ M - k    1     ,,/x 

o o     w 

Thus 

00 
M-l M-l 

h  I dwV   V (M - ^)(M - k) 
^5=1 k=l 

CXD 
M-l M-l 

sin im   sin kcur /     r-i   r-»   M     . V     IT 
0   -  8 / dco^   ^      ■       : " : 

jx> 

ion kwT 
0 o 

^T      la~" "7 
CO 

^-1 k=l 
0     CO 

u b   M-l M-l 
r-1   O 

<   h du)     )    (M - ^)(M - k) 

^=1 k=l -co 

sin ^ü)T sin kcox 
o o 

toT kCOT 
0 0 

0 

00 
M-l M-l r-T i—> sin ion   sin ken- 

Ij / dco)     )   (M - ^)(M-k) 

JX> 
^=1 k=l 

&0T kWT 
0 0 

(37) 

! 

i 

I 

Now 

00 

-co 

M-l M-l 

£=1 k=l 

k l dwV   T (M-^)(M-k) 
M-l M-l sin tor   sin kcorr ,    " x _1

x       , w   . 
o               o       Un\nVM-^M-k./4     ,      v   = __ \     \     L «—min(£r.kT ) 

iw      tor      ^ k'^   *    k        0   0 
o o o    *=1 k=l 

(38 r 

where min(^r ,kT ) denotes the smaller of the two numbers ^T and kx . %      0*      0 0 0 

Simplifying further, 

M-l M-l 
l4n  r   r   M-^ M-k 

M-l M-l l-l 

j      I o'       o' T„  £_;        ^ a-    <LJ    O ^ 
o    M k=l ^1 ^2 k"l 

 . (39) 

Gierens de Haan, Nouvelles Tables D'Intägrales Definies, Table 157, No, 1. 



Also 
00 

8     dw 

M-l M-l 
1   r'   ■'     i M-k   1 

6) 

L 
;-i 

TT   kr     2 
0 0   0) 

M-l M-l 

o    o ^=1 k=l 

G-12 

M-l 

0     0 ^ * = i 

M- i (ho) 
i! I 
■.;. '■ 

Vfith substitution of Eqs.   (39) and (1|0) into Eq.   (37) one obtains 

-i2 M-l M-l ^-1 

iiü V    (M ~ ££ + 8n  V   y    (M-^)(M~k)      8     1      r* 
M-l 

M--^ 

^=1 ^=2 k=l 
0      0   0 

1=1 

. 

Ä   M-l M-l 

U du^   \    (M-^)(M-k) 

-I        1=1 k=l 

sin ^cor sin kon: 
 0 0 

lust kwc"" 
0 0 

0 

M-l M-l i-1 

<   ^iV   (M -^)   + 8n r   r    (M- -g)(M-k) 
0 A    * k2 k=l 

(ia) 

1 

! 

Finally, using Eqs.  (la) and (35) in Eq.  (31), I 
Tu        c 

M4 
M-l  ^-1 M M~l 

0 0 
I^I 0 0 ^=1 

M     COT        » «   ,    n 
0 0  ^=2 k=l 

<   A(DC output)    < 

0(71,) 

Tu        r' 0 " £_ 
N hs '" 

M M-l M-l ^ -1 

1 + 
0 0 

1 
^1 

r    u3T 
0   0   ^=1 

H     W  T 
0   0    i=2   K=l 

I M-l 
U K1 M-^ 

- 2 

0 0 ^=1 

0-2) 
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The symbol Si(x) - I  2 dy denotes the sine integral. 

0 

If "(Jo-^00 >  i«6«; ^he frequency range 0 < w < w processed by 

the detector is large compared to —- , the upper and lower bounds converge T, 

towards each other and 

IT cu        c 
A (DC output) Tj o   w   £_ 

HYk) N 
m 

Under the condition —-»-i = ~.  the output signal to noise ratio of a 
N(co)        N 

likelihood ratio detector is 

A(DC output)    n T 
D(output j     3 y2n   jl 

' sy 

~1   G(") da) (Ui)1 

1 1 G(co), the array gain, approaches M for oo » — . Hence for to »-r- 
^o 0  To 

the ratio of the output signal to noise ratios given by Eqs, ([|3) and (1U;) 

tends to unity. This is, of course, reasonable since there is virtually no 

noise correlation from hydrophone to hydrophone over most of the frequency 

range processed. 

Fig, 2 shows a plcrb of the output signal to noise ratio 

/TW '  CM      63 

normalized 

~ M —• I versus 7^ for a five-element linear array 
2n  M I     2n 

0 

with respect to 

with two-foot spacing between hydrophones. Even if ~^, the upper limit 

of the frequency range being processed, is as low as 1000 ops the bounds 

of Eq. ([£) coincide closely so that the curves accurately determine system 

performance. Also shown on the same figure is the output signal to noise 

ratio (again normalized with respect to l 

ratio detector using the same array of hydrophones. The oscillatory 

— M 4- ) of a likelihood 
2n  j^ 

: 
■ 

.s 

See Report No. 3, EG. (30), 
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behavior of this curve is due to very pronounced oscillation of the array 

gain G(w) about the average value 5. From a practical point of view 

the most important conclusion to be drawn from Fig, 2 is that the output 

signal to noise ratio of the likelihood ratio detector does not exceed 

that of the power detector with Eckart filter by a factor significantly 

in excess of 2 if the processed frequency range extends beyond 1000 ops, 

IV. Conclusions 

This report compares the performance of a likelihood ratio detector 

with that of a power detector preceded by an Eckart filter. Signal and 

noise are assumed to be independent Gaussian random processes and the 

signal to noise ratio at each hydrophone of the receiving array ia assumed 

to be small. 

In the absence of noise correlation from hydrophone to hydrophone 

the likelihood ratio detector is shown to be formally equivalent to the 

power detector with Eckart filter. For the case of appreciable noise 

correlation between hydrophones, calculations are carried out under the 

following supplementary assumptions: 

1) Signal and noise spectra satisfy «4-4 = --r , a constant, over 

the frequency range processed by the detection system. 

2) The receiving array is linear and has M equally spaced hydrophones. 

Numerical results for a fi\e-element array with 2-ft. spacing between 

hydrophones show that the output signal to noise ratio of the likelihood 

ratio detertor exceeds that of the power detector with Eckart filter, but 

by a factor never significantly greater than 2 if the processed frequency 

range ext T.ds beyond 1000 cps. As the upper limit of the processed 

frequency range approaches infinity, the ratio of the performance figures 

(output signal to noise vatios) of the two instrumentations tends to 

unity. 
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I. Introduction 

This report continues the study of the detection of v;eak directional 

signals in the presence of a very much stronger isotropic background noise. 

As in several earlier reports, both signal and noise will be taken as 

Gaussian random processes, but in contrast to most of the earlier work the 

noise level will be assumed to vary from hydrophone to hydrophone. The 

problem of variable noise levels was treated in Repc  No. 2 for the case 

of a power detector using clipped or undipped data, it was shown that 

the performance of the system employing clipped data can be distinctly 

superior to that of a system using undipped data when the variation of 

noise levels becomes sufficiently lafge. The purpose of the present 

investigation is to determine whether clipping is an efficient method for 

handing variations in noise levels or whether substantial improvements 

might be attainable through use of some more complicated procedure. Since 

the likelihood ratio detector is optimal under most reasonable performance 

criteria, it will (as in several earlier reports) be used as the standard 

of comparison. 

i The nature and degree of difficulty of the problem to be studied 

varies drastically with the assumptions concerning the variations in noisr. 

level from hydrophone to hydrophone. Of particular importance are two 

queationss l) Dc.s tha noise level at each hydrophone remain essentially 

constant over the time interval T available for detection? 2) Can the 

noise level at each hydrophone be monitored continuously and therefore 

assumed to be Known during the detection process? 

In practice the time T is likely to be sufficiently small so that it 

is not unreasonable to regard the noise level at each hydrophone as fixed 

over T seconds, Furthermorej in all cases where a significant detection 

1 

I 
I 

i 
I 

I 
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problem exists,  the signal to noise ratio at each hydrophone is small 

so that the total average received power differs only insigni.f-Leantl_y 

from the average noise power.   It should, in general^, be possible to 

measure the average received power to a reasonable degree of accuracy 

in a time short compared to T.    Hence the analytically simplest 

assumption, that the noise level at each hydrophone is known and remains 

fixed during the observation interval,  appears to be quite realistic. 

II.    General Ref    ts 

Under the assumptions stated above the analysis of the likelihood 

1 
ratio detector given by Bryn   and extended in Report No    3 requires only 

minor modifications.    It is now no longer possible to work with the 

normalized noise correlation matrix Q-, used in Report No. 3.    However, 

if the same average signal power is received by each hydrophone,  it is 

a simple matter to show that the output signal to noise ratio assumes the 

form of Eq,   (l), an expression entirely analogous to that obtained in 

Report No, 3 Eq.   (25)]. 

A (DC output) 

D (output) 

s2 

P2(n) Qgtn) (1) 

li 

I 
1 

1 • 

I 
1 

Here P?(n) and Q0(n) are the matrices of unnormalized correlation 

coefficient3 of signal and noise respectively. In other words Pp has 

the elements (A. (n) A . (n V) and Q the elements ^.(n) A.(nj) where 

A.(n)> is the set of Fourier cosine coefficients of the signal received 

by the i ' hydrophone Cüee Report Ho. 3, VaCe  2). 

F, Bryn,"Optimal Signal Processing of Three Dimensional Arrays 
Operating on Gaussian Signals and Noise," J.A.S.A. 3I4, No. 3, March 

1962, pp. 289-297. 
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The computational proble;;; is sinpliiied greatly if one assumes 

negligible noise correlation fron hydrophone to hydrophone. The effect 

of noise correlation on detector performance has been studied extensively 

in earlier reports^ and there is no reason to expect the introduction of 

variable noise levels to alter the general conclusions drastically. The 

simplifying assumption is therefore made in order to focus attention on 

those aspects of the detection problem which depend strongly on the 

variations in noise level. 

In the absence of noise correlation from hydrophone to hydrophone, 

the matrix Qp(n) is diagonal and may be written in the form 

Q^n) = N(con) Au 

\% 0 

N, 

L' A 

N(a)) is the normalized noise spectrum,  so that       N(tü) dco = 1 ,   lJ. 

0 
th 

stands for the average noise power received by the i  hydrophone. If 

the array is steered on target, as will be assumed, 

P2(n) =^S(ü)) Aco 

1 1 ... 1 

1 1 ... 1 

■ 

1 1 ... 1 

3(co) is the normalized signal spectrum, and S  stands for the average 

signal power at each hydrophone. 

Equation (1) may now be rewritten as follow;;; 

A (DO output)   <v 

D(output) 

M      "1 

Mr y 

(2) 

(3) 

IUun/ i=l '  i 

(h) 

i •i 

.,.'-, 
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If T is sufficiently large so that i(a)) and II(w) are essentially 

2n constant over the frequency interval    h<o ^ •?*■ , Eq,   (I4) can be approximated 

by the integral See Report No, 3,  Eq. (29) 

r M 
A (DC output) 

D (output) 

JL 
2n 

i=l 

(5> ,1 

Comparing with Report No, 3, Eq, (32), one sees that this expression 

is equal to the output signal to noise ratio of a likelihood ratio detector 

with input signal to noise ratio 

M 
1^ s 

(6) 

at each hydrophone. 

With the same noise level at each hydrophone and no noise correlation 

from hydrophone to hydrophone, one finds that the likelihood ratio detector 

is formally equivalent to a simple power detector preceded by an Eckart 

filter See Report No. 10, Eq. (2I4) . With varying noise levels the 

equivalent instrumentation is a power detector with Eckart filter and 

adjustable gain k. in each hydrophone circuit» A block 'diagram of the 

required instrumentation is shown in Fig, 1. The analysis of this 

circuit requires only a minor extension of the argument contained in 

Report No. 10, Thus y, is now given by 

00 
M 

y2(t) - dc W(T) ^ k, xi(t - x; (7) 

i=l 

''if only  the frequency range     ui  ^- ^ ^ wu    is processed by the 

detector the liirdts of integration become u^   and uv,. 

Note  Uiat  in Report No,  3 the  symbols  S(u)) and N(co) represent 
unnormal ir.c 1 spectra. 
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0    ^ kl 

,    X2 
h V/ 

"3    J k3 

C^3L I' 
kM 

This leads to 

Sckart 
filter 

Squarer 
Low-pass 
filter 

h 

Fig. 1 

A (DC output) = * 

M 

6ki 
i=l 

2 

^      dw S(a)) H(co) (8) 

and 
00 

D2(^) *$     dco^co) 

-.Ü3 

M     M 

E EkikhGih^) 
i=l h=l 

(9) 

where H(a)) is the frequency response function of the Eckart filter and 

G., (to) is the unnormalized cross-spectral density between the i     and h 

hydrophones.      See Report No.  10, Kqs.   (6) and  (19). 

Hence the output signal to noise ratio is 

ü (PC output )   _   W 

M 

i«l   . 

düd 3 (uj) H(co) 

D(y, 
(—I 

27n 

I      J  dco |H(.o)| 
M     M 

i=l h=l 

k,k,   G,. («; 

(10) 
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The frequency response function of the Eckart filter satisfies the equation 

2 
H(co) S(co) 

N2H 
(11) 

Substituting Eq, (11) into Eq. (10) and recognizing that the integrands 

ir numerator and denominator are even functions of co 

A(DC output)   J_ 

v(yk)        '  V2" 

M -,2 

Li=l 
^/-te 

0 

S2(co) 

N>) 

M  M 

E EkikhGih^ 
i=l h=l 

n-> 

In the absence of noise correlation from hydrophone to hydrophone 

GihH = ( 

Ki N(w) 

Hence 

^(y^) 

M 

Ih 
A (DC output) _ n/_T_       Li=l 
 ~""" ''       "   V2n 

00 

0 

for   h = i 

for   h / i 

S(ffl) 

S co) 
N(ä7J 

N12 
M 

<,% 

9n   ^ 

M 

■'1 
2n ^   M 

i=l 

2 

i=l 

_  

/        [N(ü>) 

i=l 

Equation  (lh) is identical vdth Eq.   (^) if 

M     .2 

k. 

i=l 

EvX i=i ^ 

(12) 

(13) 

(Ik) 

(15) 

I 

1 
I 

i 
i 
I 
i 

i 

l 

i=l 
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Equation (15) is sctisiied ;;hen 

k. c 1 1 N. (16) 

Thus the k. in Fig. 1 are simply gain control circuits which discriminate 

against hydrophones with high noise level. The total average power out 

1_ 

i 
of the gain control k. varies with 

1 NA 

III. Comparison of Likelihood Ratio Detec or and Clipped Power Detector 

In Report No. 2 the performance of a power detector operating on 

clipped data is compared with that of a power detector operating on 

undipped data. For ease in comparison with the earlier results it is 

therefore convenient to relate the performance figure of ^he likelihood 

ratio detector Eq. (5) 

undipped power detector. 

With Gih(w) given by Eq. (13), H(Cü) 

Eq, (10) becomes 
CO 

i) I dco S{oi) 

to the equivalent figure of merit of an 

= 1. and k. = 1 for all i, 
' i 

A (DC ontiMt) _ TTP „2 

DCy,,) 

J 

0 •^4- 
\\ dwN2(u) 

to 

M 

TA 
i=l 

-0-,       U 2n         M 

1=1 
dco N (w) 

(17) 

Thus the ratio of Eq, (5) to Eq. (1?), i.e., the ratio of the 

performance figure of the likelihood ratio detector to that of the 

undipped power detector is 

performance figure of likelihood ratio detector 

performance figure of undipped power detector 

MI ^i 
M 

i=l 

N (u) du 

(10) 
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When all of the JN. are equal Eq, (18) reduces to 
■ 

r oo 

performance figure of likelihood ratio detector 

performance figure of undipped power detector 

S(w 
NTw 

dw 

r oo 

N («) dec 

(19) 

This gives the improvement attainable with likelihood ratio techniques 

in the absence of noise variations from hydrophone to hydrophone, a 

factor which has been discussed in several earlier reports. 

The quantity of interest here is the dependence of Eq,  (18) on the 

variation of $. from hydrophone to hydrophone.   It is given by 

M       w M        \ MM 

\1=l     />i=i       ' i=l jal     " 

(20) 

For numerical computations it will be assumed that the average noiae 

power at each hydrophone can assume just two values, a lew value N, and 

a higher value IL, The probability that any given hydrophone has average 

noise power NH is p and the noise power levels at different hydrophones 

are regarded as statistically independent. 

If k of the hydrophones are in the high noise state 

M  M 

^    ^    HA i=l j=l  nJ 

;N    N 
k   +  (M - kT + k(M - k)Up ■»■ rpl (21) 

Honce R,,  the expected value of F, assumes the form 

M 

k-0 

kJ ♦  (M-kT + k(M-k)!Tjä t r 
\  I       H, 

M; 

k/ (M-k)l 
pk(l-p) 

M-k 

I 
I 
i 
! 

I 
I 
I 
I 
I 
I 
I 

i 

(22) 
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Figure 2 shows IL  as a function of   1'L/l'L    for   p " i   and   M = 2,5,10 

and 0° .    Also shown is the improvement ratio R   of a clipped power 

detector relative to an undipped power detector, normalized to unity 

at   Nu/N,  = 1 .    This curve was computed from Report No. 2, Eq.  Oh), 

with   p = w   and   c = NH/N      (low input signal to noise ratio).    In 

Report No. 2 it was assumed in effect that precisely pM hydrophones were 

in the high noise state  (perhaps because of known ; patial patterns of 

flow noise).    This is equivalent to the assumption   M—>» .    Thus R- 

rises somewhat more rapidly with   Nu/N.    than the equivalent improvement 

K (M«<») 
ratio for the clipped power detector. However the ratio —«  is less 

c 

than 2 over the entire range investigated. Therefore the gain to be made 

by going to a likelihood ratio detector is probably insufficient to 

justify replacement of the simple clippers with the more complicated 

gain control circuits demanded by the likelihood ratio detector. 

The improvement ratio PL is the expected value of the ratio of the 

performance figures of the likelihood ratio and power detectors. An 

equally logical basis of comparison would be the ratio of the expected 

values of the performance figures. This leads to the definition 

■■.: 

■ 

p - 1 ^(per^0Kriance figure of likelihood ratio detector}    /p. \ 
'2      K E(performance figure of undipped power detector) 

whe reas R.  was defined by 

"i ■ i u 
performance figure of likelihood ratio detector I      /pi \ 

performance figure of undipped power detector 

In both of these equations K is the improvement ratio for equal noise 

power at each hydrophone and is given by Eq.   (19). 
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From Eqs, (5) and (1?) 

V (25) 

With the same assumptions concerning the distribution of the JJ. as 

were made in the computation of R. one obtains 

M 

El ?  -i 
^i=l 

K 
ME 

K. 
M E_. + il2 N. H NT 

(26) 

and 

E -H  

M 

E—1  
k^0k NH + (M-k)NL kl  (M-k)J 

MJ 
pk(l-p)M-k  (27) 

i=l 

Figure 3 shows IL plotted as a function of NJT/NT for p ^ w and 

M "  2,5,10 and <» , The curre for M = t» is, of course, identical with 

the corresponding curve of Fig. 2, so that the comparison with R remains 

unchanged. However, for finite M the various curves of Fig, 3 approach 

asymptotic values of 2   for large NH/NL . This is due to the fact 

/ -M\ 
that there is a finite probability (2 ) that all hydrophones will be 

1 
ir~ in the low noise state.    Hence   E approaches the finite 

i=l 
v-M 

constant 
M NT 

as    NH/NL—i00 . 

Report No. 2 considered a variety of possible distributions for J>i . 

aside from the one analyzed thus far.    Equivalent computations for the 

improvement ratio of the likelihood ratio detector    (with    M—*00 )    show 
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results entirely consistent with those given in Figs, 2 and 3. In each 

case investigated the improvement ratio of the likelihood ratio detector 

rises somewhat, but not drastically, faster with Nu/lL than that of 

the clipped power detector. For example, if M. has the continuous 

probability density f 

fd^) = <; 

1 /, % 

Ki     \ 

rl 

:or NT < ■L - ^ -C "H 

elsewhere 

m) 

and if the various jSI. are statistically independent, one finds (for M -*00) 

\1 

li - 1. 

^L R. 

M, NH 
(2?) 

The improvement ratio for the clipped power detector is from Report 

No. 2, Eq, (2$). 

Vh 

H
    ! 

2/NH J 
NW.nNH J 

(30) 

Thus for large Nu/li ir "L 

\ r 
c 

R2 .- 1   NH 

c        L 
(31) 

Hence 

r 
c 

" 1,73 for r 1000 
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IV. Conclusions 

This report analyses the effectiveness of likelihood ratio techniques 

for the detection of weak directional Gaussian signals in Isotropie 

Gaussian noise when the average noise power varies from hydrophone to 

hydrophone. The following basic assumptions are made: 

1) The noise disturbances received by different hydrophones avo 

uncorrelated. 

2) The average noise power at ^ach hydrophone can bo measured in 

a time short compared to the time T available for detection. 

3) The average noise power at each hydrophone remains fixed during 

the observation time T, 

h)   The average noise powers at different hydrophones are 

statistically independent. 

Under these conditions the likelihood ratio detector reduces to a       -r 

power detector with Eckart filter incorporating in each hydrophone 

circuit a gain control that varies the gain of the channel inversely 

with the noise power received by the corresponding hydrophone. 

The performance index (output signal to noise ratio) of the 

likelihood ratio detecoor is better than that of the clipped power 

detector under all conditions, but the relative advantage increases 

only slowly with increases in the variation of noise from hydrophone to 

hydrophone. Thus one comes to the conclusion that clipping, while not 

an optimal procedure, is quite efficient in combating the offocts of 

noise variation from hydrophone to hydrophone. The gains to be made 

by the use of likelihood ratio techniques are relatively small in all 

cases itvostigated. 

I 

] 

i 
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I I. Introduction 

As implied in the title, a signal is received in two channels, and 

the problem is to estimate relative delay between the two received 

versions. This estimate of delay is wanted in order to determine the 

bearing of a point source generating the signal at some distance away 

in the transmission medium. 

It is assumed that the signal generated by the source is random in 

nature, and for simplicity in the following work, it is also necessary 

to assume that the signal process is stationary Gaussian bandlimited 

white noise. It will further be assumed that the signal in each 

channel is corrupted by independent stationary Gaussian bandlimited 

white noise. Figure 1 is a sketch of the system being studied. 

wave 
front 

s(t) 

point 
source 

ray paths 

s(t -P) + n- 

s(t-P-ö) + n2(t) 

receiving array 

6-it 

Best estimate 
of 6 

Figure 1      Receiving,  Estimating System 

The relative delay    6 = -    is the time required for the signal to 

travel the additional distance d in the medium.    The delay P is the 

gross  travel time  of the signal to the array and will not enter into 

E-l 
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further discussions. Difference in attenuation of the signal before 

entering the two channels is neglected. However, different noise 

levels in the two channels are assumed. The choice of bandlimited white 

signal and noise means that frequency dependence of attenuation has 

been neglected. This assumption will be poor at large bandwidths or 

long ran^e of transmission. Usually a random component of delay and 

a non-stationary signal level are present in systems of this sort 

due to inhomogeneities of the transmission medium, multipath, etc. 

However, these are neglected in the present analysis. Some 

discussion of these effects will appear in a final section of this 

report. Also in the final section will appear further discussion of 

the other assumptions, 

II. Notation and Model 

It is assumed that the signal and noise are observed in each channel 

over the period of time T, The time origin will be chosen so as to 

neglect the gross delay P indicated in Fig. 1. Then we write for the 

signal in the two channels 

x(t) = s(t) + n^t) 

(1) 
y(t) - s(t-5) + n2(t) 

Under our assumptions, x(t) and y(t) are each completely characterized 

over a long interval T by 2TW samples taken at Intervals of ^y seconds. 

Here W is the bandwidth in cycles per second. We make the definitions 



»IWIIIIlMmWIlllMWllWmBBllllllli^millllllMIMMlWMninwiMMlil ■ ■! mn mmr         ■■ ■ i  

E - 3 

The data available to the estimator is then the two row vectors x and y 

or the composite vector I *  (x,1/) where 

x s ^x^jXg^ t.. ^ipy/ 

(3) 

y ^ \y-\)y2>^'' ^PTW 

A well-known theorem from the theory of estimation sets a lower 

bound on the variance of an estimate of the parameter of a distribution 

when a sample from a process with that distribution is available. We 

shall formulate our problem in this vein. Subsequent discussion will 

show that certain realizable estimation schemes attain this limiting 

performance. Under the assumptions, all the statistical parameters 

of the joint distribution of the components of I  are known except the 

relative delay which is to be estimated. We write the joint probability 

density as P^jk) where I is the previously defined vector^ and k is 

defined sv.jh that 

i - 6 (h) 
2W 

The best estimate of the normalized variable k is denoted ktt and 

the theorem states that 

E^ - kH   >   —r 
E < ^[logP(^k)] 

(5) 

^3ee II, Cramer, Mathematical Methods of Statistics, Princeton 
University Press, 1911^ The material is discussed in chapter 32 and 
foilowing. 
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The theorem is valid for unbiased estimates, i.e., estimates such that 

E<k^i « k , and for regular estimation, i.e., for distribution functions 

which do not have discontinuities as functions of k.   These conditions 

apply to the present case. 

In the section which follows, the Gaussian probability function 

P(^}k) vail be written down and the operations indicated in Eq,  (Sj 

will be carried out.    In the end the normalization to the variable k 

will be reversed so that the error will be stated in more familiar terms, 

III.   Minimum Variance of Estimate of Relative Delay 

The Gaussian probability function P(^jk) is easily written in 

general form. 

P(tyc) exp < - 75- ^ M^ « 

{2.)n|M,.|1/2 
(6) 

I 
I 

I 
I 
I 

T 

Here n a  2TW is used for convenience, and the covariance matrix M, 

is defined below, 

M, 

i— —1 

Ki a12  * ' ' aln bii b12  ' • • V 
a21 a22  ' • « b21 b22  ' «  •           | 
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b, 
in 
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(7) 
I 
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a.,  = S + N, li 1 

c,.  = S + N. 

all i 

(8) 

aiö3 cir0 all    i / j 

\ * Ti yj [ \2Wl      I 2W 1J 

n(j-k-i) 

Note that only in the elements b. . does the fonctional depandonce of P 

upon k appear. 

We proceed by carrying out the operations of   P(^jk) indicated 

in Eq.  (5).    First, 

log P(^k) - - n log 2n - £ log j^ | - l^"1^' (10) 

i 

The next step, that of differentiation, is tedious and so the details are 

relegated to an appendix. It is convenient to evaluate the derivative 

only at integral values of k. In fact, further attention will be 

concentrated only on the case k "> 0 , although other integral values 

are possible. Later disc, gsion will show that this is not a serious 

restriction. 

As shown in the appendix, 

log P(^k) 
9k 

k=0 

y m x (11) 
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where 

m « 

S 
B 

n u 

s 

s 
55 

1 

s 
31 a       •       « 

Tfiff ... 

(12) 

and 

B =  (S + N1)(S + N2) ~ S' (13) 

J, ' ^2 1 Now, it is necessary to compute   E aymx J \ in order to substitute 

into Eq.   (5).    The product   yrax   is a summation of   n  - n    terms, each 

one a product of the form 

x. y. 

I(i-J)|B 

The square of   ymx     is a summation with    (n  - n)     terms consisting of 

each terra in   ymx   times itself and every other term.    If the 

expectation of the sum is taken terra by terra, each may be expanded 
2 

according to the following principle. 

a Wjxv« j ■ 4^1 E
{V<j* EfiXh) "W* E

M
E
W 

w 

®       ©      ® 

Sae Davenport and Root, Random Signals and Noise, McGraw-Hill, 
1958, 56.7. 

I 

i 

\ 

I 

i 
I 

I 
i 

t 
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Under the assumptions of the problem, and with   k = 0 , all the 

expectations of two-fold products shown in Eq, (Ik) are aero unless 

the indices of the two variables are the same.    For equal indices we 

have 

2] E^x, S + N, 

E^    - S + N2 (15) 

Because the diagonal terms of m are all zero     See Eq, (12) , terms of 

type 0 in Eq, (1)4) do not contribute to   Euymx') L   Terms of type 

0  contribute only if   i ■=» h   and   j = ^  , or in other words, for 

products of terms of   ymx     with themselves.   Terms of type Q) will 

contribute only if   i a * and   h «» j , or in other words, for products 

of terms of   ymx     with symmetrical positions about the major diagonal. 

We shall carry through one sample set of terms.   Let us consider the 

expectation of the products of the term from   ymx     corresponding to 

the first non-zero element in the first row of m, with itself and 

wi*h its diagonally symmatrio term.   The self term contributes 

v    2   2 h   2 (S + N, )(S + N«) S /B     and the cross product contributes    - S /B    . 

The net contribution is   S /B .    For terms further frOiti the diagonal, 
2 

a factor    (i - J)     appears in the denominator.    The net contributions 

of all self and cross products may then be arranged into a matrix 

for convenience.    This givea 
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E (ymx')2! 
(S + N1)(S+N2) - S' 

s< 

1 
H 

i 
9 

1 
•      «       • 

J 

(16) 

The factor   S / [(S +N, )(S + N?) - S J    is common to all the terms, and the 

operation S< > has been invented for convenience to indicate the sura of 

all elements of a matrix. 

The summation is fini.j because the matrix is   nXn .    We may write 

the summation in the f»rm 

1, 9 (n-lf 

I 
I 
i 

■ i 

. 

! 

I 

This may be manipulated to obtain I 

2n 1      1 

(n-l) 
- 2 1 + ? + I+ '"K-l 

The bracketed series in the first term converges    for large n to   n /6 . 

The bracketed series in the second term diverges    but may be approximated 

for large n by    log(n-l)+ y, where   yC^.5772    is Euler's constant. 

Hence we write 

']r See Pierce/ A Short Table of Integrals, fi.arth ed., Ginn and Co., 
1956, No. 832, 

See Pierce, Mo, 79I4, 

I 



i/frmx'HÄ;  -ü 7     n^- - log(n-l) - .5772 
(S + N1)(S + N2) - S2 

E - y 

(17) 

for large n.    Obviously if n is large enough only the first term in the 

bracket need be kept, 

Now, substitution into Eq.   (5) yields 

r          ^       (s + N-Ks + Nj ~s2 

E (k* - k;      >   _i ^ 2 i  (18) 

] l J 2S n^-.log{n~l) - .5772 

if 
Substitution of n = 2WT and 6 = — yields minimum estimation error 

2W 

for time delay 6 in terms of observation time T and bandwidth W. We have 

J S OW      l^L„log(2W-l) . .5772 

(19) 
s s If the usual assumptions of   WT » 1    and   «r-   or   «- « 1    are made, the 

expression may le simplified considerably.    Then we have 

E((5*- 5)2] I!.    3 1      .1 (20) 
I J S^       8n       W     WT 

Corresponding to the restriction k ■= 0 , there is for Eq, (20) the 

restriction 6 ■= 0 , However^ this is not a serious restriction because 

the equivalent situation is attainable by insertion of a known amount 

c. delay into x(t), or altering the time origin of the x(t) samples. 

Since the result given by Eq, (20) is supposed to be an absolute 

minimum for the error^ it is useful to compare it with results obtained 



E »-10 

6) Let N-j^ « N2 = N in Eq. (20). 

When all of these changes are made, the two expressions are equal. 

H. Maximum Likelihood Estimator 

attainable, it can be attained by the method of maximum likelihood. 

To estimate by the method of maxjjnum likelihood, it is necessary to 

solve the equation 

■^-log P(«5k) = 0 (21) 
9k 

H. Cramei', op. cit., Chapter 33. 

i 

elsewhere. In Progress Report No. 9,  T. Usher, Jr., has an equation for 

minimum bearing error for a split beam system. To make a comparison, 

we use his Eq. (52). To put his result into the same terms as ours, we 

make the following substitutions or changes: 

1) We have two hydrophones. 3et M = 1 . 

3) Square expression to get mean squared error. 

k)   Set bandwidth üL of averager equal to «, This is obtained by 

assuming that the averaging filter of the split beam system has a 

weighting function which is constant for an interval T and zero elsewhere. 

5) Set g (u)/g (w) = 1 , 0 < co < 2TIW J zero elsewhere. This 

conforms to our assumption of bandlimited white signal and noise. 

I 
I 

I 
If the minimum estimation error given by the statistical theory is 

5 

I 
I 

for the vaj.ue of k as a function of the value of the sample vector    . 

Unfortunately,  it has not been possible to perform the differentiation 

indicated in Eq,   (21) continuously as a .function of k.    Since the 

differentiation has been performed for    k - 0 ,  it is  clear that a 1 

i 
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i 

i 

nearly equivalent method of estimation is to "steer" the array either 

physically or by insertion of time delay until the time delay is aero. 

This may be detected when the value of +ymx = 0 . Then by Eqs, (ll) 

and (21), the maxLmum likelihood estimate of the additional delay is 

zero. However, since this is not strictly the maximum likelihood 

solution sought, it is necessary to evaluate the error of this method 

of estimation, A brief investigation has shown that evaluation of 

this error is tedious, and involves finding the distribi ion of zero 
* 

crossings of a random process. 

Since it has already been shown that another estimation method is 
i 
4 

as good as the method of maximum likelihood could be, it is not 

necessary to go into the details of the analjrsis here. 
i 

V. Conclusions 
I 

The foregoing results show that the ideal system in the sense of 

our assumptions has an optimum performance specified by Eq. (20). 

Furuhjrmore, under the same set of conditions, realizable schemes such 

as the split beam system attain the same optimum performance. Although 

this is comforting, it leaves unanswered the question of performance 

under other conditions. The realizable schemes have been evaluated 

under other conditions. For instance, the split beam system has been 

extensively analyzed in Progress Report No. 9. However, it is not 

known how this performance compares with the optimum attainable under 

the same conditions. It is proposed to discuss the assumptions made 

in this report and to suggest ways in which the analysis could be made 

more general. 

To begin with, the assumption of bandlimited Gaussian white signal 

and noise is quite restrictive. Unfortunately, the entire analysis 
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works because of this set of assumptions. The band-limitation allows 

sampling, thus reducing the data to a sequence of numbers. The Gaussian, 

white assumption gives the probability density function very simple 

properties, Th5) one hope of improving upon this assumption is to sample 

in the frequency domain instead of in the time domain. However, this 

will make the statistical properties a much more complicated function of 

time delay. 

Another assumption has been made that the signal level is 

stationary. However, it is often observed that received signal strength 

varies as a function of time, although usually at frequencies which are 

very low compared to the system bandwidth. One possible representation 

of this situation is multiplicative noise. That is, we write 

x(t) = a(t) s(t) + iL^t) 

y(t) - b(t-6) s(t-5) + n?(t) 

(22) 

I 
I 
I 
1 
I 
I 

where a(t) > 0 , b(t) > 0 are slowly varying random processes, 

independent of s(t),n-,(t) and n?(t). It is helpful to assume 

E<a (t)V - 1 , Ecb (t)> - 1 , so that the average signal to noise ratios 

are still S/N, and S/N«. It can be shown that if s(t) is Qaussian 

white noise, still the product a(t) s(t) or b(t) 3[t)   will not in 

general be either Gaussian or whit«. However, as long as Ihe  signal 

to noise ratios are very small compared to unity, then x(t) and y(t) 

may still be assumed Gaussian white. Then the rest of the analysis 

will carry through in a simple fashion, with the only change appearing 
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in the valv.es of the coefficients b. . given in «Iq,   (9).    It is clear 

that 

b     = Ex   jA = E sp-     s llÜU a ^   b 
2W|       1 2W 2W 

= S sin[n(j -k-iHR 

n(j-k-.) ab 2W      J 
(23) 

Note that the values of b. , are still zero for    k - 0,1,2,..,    if 
J 

j -k -i / 0 . This is then easily carried through. It is obvious 

that the only change this will make in the result is the values of the 

coefficients in the matrix m. These may be readily calculated with 

any particular choice for the function R ., 

Another empirically observed phenomenon which has been neglected 

is the random component of time delay which is cften present. To the 

extent that this time delay is identical in both channels, it introduces 

no error whatsoever. However, if there is lack of complete correlation 

between the time delay in the two channels, errors will result. If 

this delay is slowly varying to the extent that it remains nearly fixed 

over the observation period T, then the error in delay must be added 

directly to whatever random errors are generated in the estimation 

system. Hence this may be accounted for without disturbing the analysis. 

Should higher frequency components of random time delay occur, they 

will affect the result by reducing the value of E <s «y sj "^y ")> used 

to compute b. in Eq# (9). This will have an effect equivalent to 

reduced input signal to noise ratio. 

Finally it has been assumed that the complete time waveforms of 

x(t) and y(t) are available to the estimator. In practice this 
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information is usually clipped and sampled before being presented to 

the estimator. Under our assumptions the sampling produces no loss of 

information. However, if used in combination with the clipping, 

considerable information is thrown away. It would be very helpful to 

carry out an analysis similar to the one above but using only the 

sampled clipped information. Then the loss of information could be 

evaluated in terms of increase in minimum estimation error, and the 

performance of practical systems under these circumstances could also 

be evaluated to obtain a realistic figure of merit. 

The main problem in performing the analysis for clipped sampled I 

information is to write the joint probability density function for 

the clipped samples in a general form such that the differentiation, 

etc., may be easily performed. 

I 
i 
i 
i 

I 
I 
I 
I 
I 

'. ■■■ 
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Appendix  Diiferentiaticn of log P(^k)i with rsspect to k 

From eq. (10) we have 

log PUjk) " -  2TW log 2n - £ log 1^ -yt ^ I* 

®       ©       ® 
The terms are labeled (1)^(2), end Q end will be con3idered separately. 

Term (l) is independent of kj hence its derivative is zero. It will be 

shown that the derivative of (?) is zero for integral values of k. 

First we note that M. is considerably simplified for integral k. 

Denote integral k by k = K, and M^ may be written 

(A-l) 

\ 

rows 

1 3+^ 0   0  . . . 0 

K columns 

lo ... "cT  s  o . . . 0 

0  S+N1 0 ... 0  0  s 
\ 

, 0 

o    S+N:L 

1 *                   ^^ 

• 
0 

\ 
0 ^i 

■                                      \v 

\ 

0 
0 

0 0 
1 f K 

0 S+N-j^ 0 0 o 1 rows 

(A- 

0 • • • 0 S+N2 0   0 0 

1  * 

0 . . . 

■ 

0 
0   S+N2 0 

0   0   S+N2 

0 

0 
S   0 0   j • 

0 ...^ S  0   0.. . 0   | \ 

• 

(] ... o  S  0.. • 0     ! 0 S+NJ 

K colunns 
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A similar picture applies for negative integers K except that the 

minor non-zero diagonals are shifted in the opposite direction. Now 

suppose K is changed incrementally to k = K + Ak , If all but the 

linear terms in k are neglected, Iv .. can be written approximately 

M K+Ak 

0   S+N. 

Sßk 
'2 

S+N2 0 

SAk 
2 

0   S+N,, 

(A-3) 
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Then the derivative is evaluated by means of the definition. 

_d_ K 
k 

lim 
Ak-»0 Ak 

(A-h) 

K = 1<L 

For this a general evaluation of IMJ as well as M^^ is required, 

VJe begin with 1^1 for K = 0 . Note the following: 

1) 

S+N,   S 

S+Nr 

(S+N1)(S+N2) - Sc 

2) 

S+N, 0 0 S 0 

S+N1 0 s 

0 S+N2 0 

S 0 s 

= (S+N1) 

S+N-j^ 0 

S+N2 0 

0   S+N, 

+ S 
S+N1 0 

0 

s 

0   S+N0 

(S+N1)(S+N2) 
S+N1 S 

S   S+N, 

JS+N^^ S 

S+N, 

(S+N1)(S+N2) - S 
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3)   For size    2nX2n   we denote matrix sizes for convenience of reader. 

S+N, 

(nXn) 

S+Nn 

(nXn) 

1 

Without showing all the steps, expansion of the above determinant is made 

along the first column, yielding two non-zero terms. The first term, 

proportional to (S+M., ), is expanded along its n  row (n + 1  of original). 

The second term, proportional to S, is expanded along its first row. 

Then terms are combined to give 

(S+N1)(3+N2)-S
i 

S+N, 

(n-lXn-l) 

0 

S+N. 

(n-lXn-1) 

0 

S+N 
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From here it is an easy step to the conclusion that 

? 

I 

M 
0 

(S+N1){S+N2) - S' (A-5) 

In a similar fashion, if K is some integer other than zero, either 

negative or positive, but less than n, a general result may be obtained. 

The details will not be shown here.    The result is 

r p^n-lKl |K| |K| 
^   = j(S+N1)(S+N2)-S'i (S+N1)    (S+N2) (A.6) 

Similarly,  j^+Ak may be evaluated.    For compact notation, terms 

with powers of Ale greater- than or equal to two will be dropped.    Again 

the only case considered in detail is the case   K = 0 ,    Beginning 

directly with the   2nX2n   case, we have 

S+N 

M 
O+Ak S+N. 

(nXn) 

S+N, 
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Expansion along the first column yields a series of terms of the form 

(s^) |®|   + s |(D|  - sac (D   + fs |®| - ^ |©| t ... 

th st 
First the determinant (T) is expanded along its n  row (n+r" of 

original). This gives a number of terms, one of which is 

(S+N1)(S+N2; 

Tho other terms resulting from the expansion of |(T) all have a complete 

n  column of terms which are either zero or proportional to Ak as well 

as a coefficient in front proportional to tk.    Hence they are proportional 

2 
at least to Ak and may be neglected. A similar sequence of steps 

results when j0| is expanded along its first row. The result is 
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S+K, 

n-1K n-1) 

0 
\ 

\ 
S+N, 

S      -SAk    ,.. 

SAk 

S     SAk    ... 

SAkX (n-1 X n-1 ^ 

(n-1 Xn-1) 

+ terms proportional 

to Ak2 

When   \Q}\ ,    ©L   |©I , etc., are expanded along their n 

column, all the terms have an entire row proportional to Ak, so that 
2 

the contributions are proportional at least to Ak . Then we write 

M O+Ak 
+ terms proportional to Ak   or higher 

powers of Ak 
(A-7) 

Further investigation for cases K / 0 yields the result, not proven 

here, that 

n 

KL.   =1^1+ terms proportional to Ak or higher 
powers of Ak M) 

Substitution of this result into Eq. (A-I4) and evaluation of the limit 

then gives 

ak K a  0 (A-9) 

k=K 

Now there remains the problem of differentiation of term Q)  in 

Eq. (A-l), Again the dcfirdtion of derivative will bo used. 
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-^M, -1 A I M,. ^ lira 

Ak-^O 
k=K 

k'h'1^ - ¥h^'1 

Ak 

Ilrst some algebraic manipulations are performed. 
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(A-IO) 

I 

1 

\l\^ ^h^ a\l M
K"1 " ^Ak"1" (A-11) 

The difference shown in the brackets may be approximated for small Ak by a 

standard matrix technique.  Let 

^Ak = ^ + \ (A-12) 

From Eqs. (A-3) and (A-2), D^ may be written approximately, keeping only 

linear terms in Ak. It will be seen that only these terms count when 

lim Ak—yO is taken. 

0      0  ... 0 

0 

• 
• 

0       ... 0 

0 

0 

-SAk 
♦ 

'    0        \. 

• 

i    SAk\     \ 

\\N ̂ 
;                SAk    Ö ' -SAk 0     .. 

—| 

-SAk 

\ 

0s 

\ 

SAk . . « 

\ 
v       SAk 

-SAk 

0    ... 0 

0 

(A-13) 

6. Seo,  for instance,  Frazcr,   Duncanj  r.nd Collar,  F^ementary Matrices, 
Cambridge University Press,   1957,   § li-ll. 



S - 23 

Now let us define 

W1 - V1 + 6K 
(A-lU) 

Then, by definition of the unit matrix I, 

^Ak h  ' + ÖK 
(A-15) 

1 _.. 
Rearrangi.ng and pre ^multiplying by ^  give 

-1 
h'\* 6K " \  L1' "W "K J 

-n 

The Xeft-hand side la apprcx^-teiy ^.    Ration (.-12) W ^ -batltuted 

Into 'he right-hand side to obtain 

«K«   -V   DKV 

Subetltution of the varioue resnlts baok into Eq.  (A-10) then glvoe 

I«   -•- 
Since D. la the only matrix In which depondence on ik appeara, the 

K 
limiting operation may be moved insido. 

(A-16) 

•1J\ 

3k       2      k 
lim 

Ak-^O 

(A-17) 

9k' 

1 
2 

1J\ -^v^ l^lim   ^V1'' .^rLlimjU-^ (A-18) 

Ak-^0 

k-K 

of the product ahown in Eq. (A-l6) my be written 
Now all of the terms 

out. The vector * la defined in Eq. (3). Tron Ec. (A-13), ve write 



E - 2^ 

0      0    ... 

0 

D 
lim 

Ak-»0 

K 
tk 

K rows^ 

K columns 

0 

0  ... 

0    ... 0 

(A-19) 

I 

I 

1 

1 
T T    } 

I 
I 
I 
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It is not difficult to show that the inverse of VL  is as follows: 

K columns i K columns 

S-vNr 
l 

S+N. 

K 
rows 

h 
K 

rows 

-1 

1    0 
S+Nl\. 1 

0   ^ 

1   o 

o  ^ 
1 S+N1 

T'K  o 

(A-20) 

2 
where B » (S+N1)(S+N2) - S . This can be proved by multiplying by 

My,  given in Eq. (A-2) to obtain the unit matrix. 

The matrix multiplicatisn required to evaluate Eq, (A-18) is 

straightforward, but takes a lot of space. Hence only the result is 
i 

shown, and only for K = 0 , Leaving the raultiplications by I  and I 

until last, we get 
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M, -1 lim M, 
-I •   fl 

0 

(A-21) 

A slmlar set of results could be derived for   K / 0 , but since ttey 

are not really used in the main body of the report, the space is not 

taken here. 

Finally, Eq.  (A-l8) may be evaluated. 

I 
i 
I 
i 

ar    i 

I 

±(.K-v hnt] 
(A-22) 

Further simplification is obtained if Lhe upper right hand comer of  III 

is defined as a new matrix  ra .    The result is 
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m 

s 

(A-23) 

and 

Bk 

ymx 

k=0 

(A-2li) 
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I. Introduction 

The problem of single frequency wave propagation in a weakly 

Inhomogeneous nedium has been considered at length by Chernov. 

The results that are applicable for this report are found mainly in 

Chapters V and VI of Reference (l), Chernov assumes perturbed plane 

wave propagation through a medium in which the refractive index 

fluctuates in a random isotropic fashion throughout the medium, 

He develops expressions for the correlation of the amplitude and 

phase fluctuations of the scattered wave at different points in the 

medium. 

(2) ■Recently Lordv  ' has applied Chernov's results to the determination 

of the bearing uncertainty for a discrete linear difference array 

receiving a single-frequency signal. 

In this report Chernov's results are applied to the operation of 

a split-beam system of transducers identical to that considered in 

(3) Progress Report No, 9. The bearing uncertainty due to the 

scattering of a single frequency plane-wave signal is derivf;d.    It 

would be desirable to derive the bearing uncertainty for a wide-band 

random signal,  but the analysis noses some difficulties.    It will be 

seen in the following sections that tho variance of the propagation 

time through the medium is not a f.motion of frequency, but there ia 

no assurance that the exact values of the time delays for all 

frequencies are precisely tne same,  or even show correlation over a 

reasonable band of frequencies.    Possibly further study of Chernov's 

work could resolve this question.    However, the results for vade-bcnd 

signals .should be no worse than those for single-frequency signals. 

F-] 
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II. Reviev? of Results from Chernov 

Chernov assumes a single frequency plane wave for the acoustic 

pressure of the foru in Eq, (l) propagating through a medium in 

which the refractive index varies in a random fashion about a mean 

value. 

j t 
p(t) = p0(t) e  =■ po(t) e 

P+Jy 
(l) 

I 

In Ec, (1) ß and y are the amplitude and phase fluctuations respecti\ely, 

and p (t) is the plane wove solution in a homogeneous medium, given by 

Eq. (2). 

-Ö(wt-kr)  -jwjt^] 
P0(t) = £ (2) 

The variances of the phase and amplitude fluctuations are given 

in Eqs. (3) and (li). 

^y y = U (^^  il. ar(i + _ arctan D) (3) 

1/2     2 
B2\ = I! A A ^L ar(i _ J arctan D) 

2\ </      ,.      1 

/.A 

(Ü) 

(ka » 1) 

In Eqs. (3) and (li) (ii'j  is the variance of the refractive index and 

a is the correlation distance for the fluctuations of the refractive 

index. For the derivation of Eqs. (3) and [h],  the correlation 

function for the fluctuations of the refractive index at two different 

points in space is assumed to have the form 
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(m n2) = 42) 
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(5) 

where ?, T] ; andY7 are the differences of the coordinates for each of the 

two points.    Also, the wave parameter D in Eqs.  (3) and (k) is given by 

Iff     iff      1 

ka ka (6) 

The normalized cross-correlation between amplitude and phase at the 

same point in the medium is found to be 

R 
ey / 2\ / 2\ ^/2  ' 

^n(l-(-D ) 

\ri \ Vn2 
(7) 

D -(arctan D) 

For D »1 Eq. (7) becomes 

: 

%*  V ->° (8) 

The problem of evaluating the autocorrelation between the amplitude 

fluctuations and the phase fluctuations at to different points in the 

medium is divided into two distinctly different parts. First the 

autocorrelation is evaluated for the situation in which the two points 

are located in line with the path of propagation. The normalized 

longitudinal autocorrelation for amplitude and phase is gi/en by 

1,2 yiy2 

(h  6?)  (yi  y2) 

1 + 
2 Ar rr, 

\ ka I 

(9) 



"^"""^"WtlWMBWi i ill in i ii 

f - h 

where Ar is the separation of the two points. 

Next, the autocorrelation is evaluated for the situation in which 

the two points are located along a line perpendicular to the path of 

pronagation. The normalized transverse autocorrelation functions are 

R„ 

I2 

" "T    , r              ,        2{\ 
a       1 n     o.  1  -ß 

2"SlD    2 E         -D 1    a  Ü 

'1,2 
1 - g arctan D 

■V 

t' — ? r .       2\1 
E 

a 
^ 

n • Si 1 ^ 
5T 

>     a 'J 

1,2 1 
1 + K arctan D 

for ka » 1 

D > 1 

If D is very large, 

R = R 
y. 

R - 
a 

1,2   ^1,2 

In Eqs. (10), (11) and (12), i  is the separation of the two points. 

Note that the longitudinal correlation is high over a distance 

(10) 

(11) 

(12) 

• i  ; 

! 

I 
T 

hr < -TT °  a 
— f. 

which is much larger than the distance ^ < a over which the transverse 

correlation is high. 

Values for a, c, and (y. ) to be used in this report are: 

a « 2 ft. (from Chernov) 

c = 5000 ft/sec 

-9 <V) = 5X10"      (from Chernov) 
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III.    Response of a Split Beam System 

In this section the results of Section II are utilized in the analysis 

of the split-beam system shown in Fig. 1, 

Ph se Shift     ■<■*,., >      « 
Supers     ^etwor^     J™   Multiplier   ™8 

c_i L N 

2 0!il!l!VlL 

M    O 
y*)*^ 

M+l    O- 

M+2    O 
sM+2(t)+V2(t) 

2M     O 
32M(t)+n2M(t)X 

Figure 1  Typical Split-Beam Syst 

y 

em 

The assumptions concerning noise properties are the same as those in 

Progress Report No. 9.    The signal from the ith transducer is expressed 

in Eq.   (13). 

^[wt-U-l)^-^] 
s, (t) - Re < A e 

(13) 

In Eq.   (13) A is the complex number representing the magnitude and initial 

phase of the unperturbed wave at the first transducer, T is the time delay 
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of the unperturbed wave between adjacent transducers. The JTunction |. 

is the complex randoru fluctuation of amplitude and phase defined in 

Eq. (1). 

The outputs of the summing amplifiers in Fig. 1 are 

■ 

M 

\M * "i 
i=l 

Re< 
-j[cat- (i-l)aff-t] 

^+ n. [X,) 

M 
r ^ 

'B'^ ■ E 
k=l 

Re ^ A e 
-j[at-(k + M-l)air-tk+M] 

r VM(t) (15) 

The average value of the output of the multiplier is given by (3) 

-  2 
y = - arcsm 

R  (o) 

R (0) R (0) 1/2 

LLXA h 

(16) 

For lev; signal-to-noise ratios at the transducers, the values of R (0) and 
XA 

R (0) depend on the noise parameters only, and R   (0) depends on the 
XB ' '     VB 
signal parameters only. 

The "on target" null response of the array is thus determined solely 

by R   (0), and for this reason the cross-correlation function receives 
Xk*B 

our attention. In the following analysis the overbar indicates averaging 

over the time variable, and the brackets /) indicate averaging over the 

space variables. The functions x.(t) and ^„(t) are 
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M 
x w" l 

i=l 

Re ( A H (ju) e 
.j[cot-(i-l)air^,] 

.+ ^'(t) (17) 

M 

k=l 

Re<A HB(ja)) e 
.j[cut-(k+M-l)aff-t   J 

k+M- f+ VM'^ 
(18) 

The crosscorrelation between x.(t) and x^ft) is 

\^ ■ h^h^ 

M     M 
—i 

^   ^   Re A HA(» e * A*HB*(jco)e k+1 

i=l k=l 

Since H.(jü)) = ju HR(jaO , Eq. (19) simpli'l JS to 

(19) 

M     M 

i-l k=l % 
A Hn(jco) 

2        84 + ß,   u • i    'k+M    , u e sin yk+M " yi + (k+M-i)^ 

(20) 

Noi.e that R        (O) ia  still a random variable invoVdng the space 

coordinates. 

As might be expected, for   T = 0 , if ß and y are independent, 

R      (0) 

T-0/ 

because (21) 

\ 
3in(yk+M -y^J - ' \sin(VM y,))  =0 
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In order to make further deductions from Eq. (20) and to justify 

Eq, (21), it is necessary to consider the values of some of the parameters 

reviewed in Section II, It is desirable to have the parameter D » 1 , 

in order to simplify analysis. From Eq, (6) it can be seen that D takes 

on its minimvm value when range r is minimum and the upper processing 

frequency is highest. For D > 100 the following relation holds between 

range and frequency. Range is given in kiloyards. 

bQOOQr) c 
2 

co a 
100 r > 

CO 

150,000 
(22) 

From Table (l) in Report 9  the upper half-power frequencies are 

listed for optimum processing as a function of range. From this table 

w   = 210,000 r 
upper    ' 

-1/2 (23) 

The simultaneous solution of Eqs. (22) and (23) gives 

I   : 
I 
T ' 

(210 000\ '^ 
r > plu;uuu n 1,25 kyd. 

\150,000/ 
for D >100 m 

Detection for ranges less than 1,25 kyd should not pose significant 

problems, 

The upper limit on the normalized correlation between the ß and y 

components of the conrplex ty function is found from Eq,   (8). 

v< In 100 

100 
.0h6 for D > 100 (2$) 

Also inherent in the analysis la the assumption of forward scattering 

for which    ka > 1  .    Thus 
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w > - = 2500 rad/sec. 
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(26) 

From Table 1, Report 9, the lower half power points for the optimum filter 

are found from the relation 

6'' 000 v'1'2 

\ ower (27) 

■ 

Thus the upper bound on range for which the assumptions are reasonably 

valid is 

s  (63,000 

I 2500 
630 kyd   f*r   ka > 1 (28) 

The maximum values of the variances for y and 0 are also of interest 

for the condition of optimum filtering. Combining Eq, (23) with Eqs. (3) 

and (I4), we have 

7.?<   11^7 (210,,OOO^r-1/2)   a(300Or)a[u7Xlo-2        (29) 

Actually, the above result should be equally valid for any filter function, 

since the upper cutoff frequency for the optimum filter is closely related 

to th    cutoff frequency for the signal spectrum. 

IV.    Bearing Uncertainty 

Two attacks are possible for determining the bearing uncertainty. 

First, the square of the cross-correlation function for   T = 0    in Eq,   (20) 

is averaged over the space coordinates. 

A H_(JLO) 

u M     M 

T>0 

w 
(LJ   <_J   ILJ   ZLi 
i---l k»l p = l q=l 

11    'k+H    • 0    ' q+M 
3in(yk+K~yi) äin(VM "■''nV    (30) 
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Since the mean square values of 3 and y are small, Eq. (30) reduces to 

i k p q \ / 

1 

i k p q 

M  M M  M 

vHmEVp)-EE<M 
i=l p=l i=l k^l 

(31) 

1 
■■*■ 

f 

Next, the derivative of R with respect to T is evaluated at T =» 0 

and averaged over the space coordinates. 

'dR 

dT 

v M      M 

V   JA HB(joa)j2^ ^    )]   (k + M-i)(/i + ßk+Mcos(yk+M-yi} 

A HB(jw) 
2   2 ,,3 (32) 

The bearing uncertointy is defined in Eq.   (33) (by analogy from Eq. 

(31), Report No. 9). 

2 /    .   \V2 

T=0 

'ill 

dT 

-1 

(33) 

T=0 

From Sqs, (3), {U),  -nd (12) and the array geometry we can specify the 

values of the individual terms in Eq, (31). 

1/2    2 1/2 , 2 / \       n   / 2\ -j    .,      n   / 2\ (j /y. vp) ._-(,. ;-7arK(:^r-r^)-,ar c 

9 9 
(o-iTd^ 

\ 
(3l4) 
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VSi i'k+M 
n '   / 2\co        _ 

2   x   ^ (k+H-i) 

(k+M-i)^ 
1/2 2                         '"z1 ' 

2x0)^                     a^ 

2    N 11 ar e 
c 

(35) 

i Combination of the results in Eqs.  (31) through (35) yields 

/  i/o/   o ,1/2    „1/2 

M (Md) 

M     M M     M 

L L%-i)" L LR(k+M-i) 
i=l p-1 i=l k=l 

1/2 

(36) 

Transverse autocorrelations are used because the average wavefront is 

parallel to the line of the array. 

The expansion of the series in Eq, (36) yields 

'H  \ i  1/2 / ^ , 
1/2   1/2 

M3/2(Md) 
1+ 2-tf R(i)M2-H R (2) + •'• 

"I- R(M-2) + M * 1 R(M-1) ~ R(M) 
1      R 
r " M  M+i 

1 ~ M R(M+2) 
2R(2M-.2) - R(2M-1) 

1/2 

(37) 

Only tho first few terms of the series in Eq. (37) have significant value, 

since the value of the normalized autocorrelation approaches zero very 

rapidly with increasing argument. 
2 

Since there are M terms in both double series of Eq. (36), the 

bearing uncertainty satisfies the folloväng inequality, in which the 

I 1/2 / 2\ \ V2 

constant K is erual to  n   \u / a 

1/2 1/2 
K -T7^  < a < ^ K —- (38) 

M'/c(Md) M(Md) 
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An alternate approach for evaluating the bearing uncertainty 

involves solving for the time delay from Sq. (20) which yields a null 

response. 
M  M 

E L   SinVM "yi + (^M-1) ^ null 0 (39) 

i=l k=l 

and 

L L (yi" yk+M^ 
i=l k=l 

(Ü0) 

03 M' 

The time delay for null response is now a random variable over the space 

coordinates. 

Since T = - 0 for small angles, the bearing uncertainty can be 

directly related to the standard deviation of T 
null' 

ö0 = H Vnull/ 

1/2 

M     M      M      M 

E E E li (^-VM'^-VM') 
i-l kal p=l q=l 

1/2 

to M2 (Md) 

(l4l) 

Simplification of Eq. (til) yields a result identical to that in Eq. (33). 

V. Numerical Examples 

Two numerical examples are chosen for which the bearing uncertainty 

is calculated. For both cases 

1 

^ 
1/2 -h  1 /2 

J3 X^  -'t 



For the first example,    M = 1 

or 10 kyd.    From Eq.   (35) 
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,    d = 200 ft    and   r = 30,000 ft 

1/2 
a     . 1.33X10-^30,000^    (1 _ 0) = 1<15X10^ rad> 

1 200 

= 6.6Xl0~    degrees 

For the second example,    K = 2 

or 10 kyd. 

ih2) 

S ,    d = 2 ft    and   r = 30,000 ft 

„    Bl.33Xio^i3MOO 
o, 2^2($0) 

1/2 

- h.85XlO~ü rad = 2 

1 + 2-^ + 

8X10"14 degrees 

2   &\ t-K T72 

m 

VI. Conclusions 

iium are extremely small. It is 

2v 

The numerical results in Section V show that the bearing uncertainties 

introduced by scattering in the mec 

possible that the assumed value cf Aa j  is too small, but the value of 

([i)  would have to be several orders of magnitude larger in order to 

have calculated results agree with the bearing errors for actual 

situations. This alternative seems unlikely, 

(2) 
The transducer configuration duucr^bed in Lord's analysisx      has 

exactly the samo geometry as the 

method of processing the transduce 

method analyzed here.    His results are expressed in the following 

equation,   usin,,  the symbols dofintd in this report. 

ne in this report,   but the assumed 

r cutouts is different than the 
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aQ = 2 
\ 

nl/2(^ 

1/2  1/2 

M(Md) 

M  M M  M 
\  \       \  V 
Z_ ZjR(p-i) " L   /_■ R(k-t-M-i) 
i=l pa,l i=l lc=l 

1/2 

(hli) 

His results are greater than the results in Eq. (36) by a factor 

.V^M  The2V2 

1 , 0. 

of 2J'/"M. The 2^'"  arises from the fact that the bearing uncertainty 

depends on 
/  ov 

\ö ) + V /    an(i not J113^ V / J  
anci 'th6 f^c^01, M apparently 

arises from the processing method. 
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I.    Introduction 

This report deals with the problem of finding an approximation to 

I 

the optimum receiver for the detection of a signal of unknown frequency 

in gaussian noise. 

It is well known that the likelihood ratio (LR) detector is the 

optimum processor for the detection of a signal in random noise. When 

the desired signal is a function of certain unknown parameters, the LR 

must be averaged over all possible values of the unknown parameters. 

This averaged LR, considered as a function of the received signal v(t); 

specifies the operations which the optimum detector must perform on 

v(t), that is, the form of the optimum detector. In most cases of 

practical interest, however, the averaging of the LR cannot be carried 

out in closed form. 

In such cases the averaged LR, or some monotonic function of the 

averaged LR, is obtained in the form of a power series involving linear, 

quadratic, and higher order operation^ on v(t). A satisfactory 

approximation to the form of the optimum detector may then be obtained 

from the lowest order term in the power series expansion, if it is 

assumed that higher order terms in the series can safely be neglected. 

This assumption is the subject of this report. 

Optimum detection is generally considered for cases in which weak 

or threshold signals are to be enhanced to a detectable level by long 

processing time. In these cases, higher order terms in the power series 

for the detector operations are usually neglected on the basis of low 

0-1 
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•ft pre-detection signal-to-noise ratio (SNR).     It is the object of this 

report to show that for certain cases this is not sufficient grounds 

for dropping all higher-order terms.    It will be shown that a low 

pre-detection SNR can be offset by long post-detection integration time, 

and certain higher-order terms in the power series can thereby be made 

appreciable with respect to the lowest-order term. 

Three signal cases are considered; 

1) A broadband gaussian stocnastic signal whose spectral 

density is flat over a band of width Q rad/sec. 

2) A narrowband gaussian stochastic signal with bandwidth SL 

rad/sec and center frequency a   rad/sec.    Here w   is 
c c 

equally likely to lie anywhere in the band Si,  and 8u is 

assumed to be much smaller than ß. 

3) A steady sinusoid of unknown frequency and phase, lying 

anywhere in the band Q with uniform probability. 

For each of the three cases, the noise is assumed to be gaussian and 

spect'.-ally flat over the band ß. 

2 
Case 3) is seen to be the problem treated in Progress Report No. 8. 

Here we shall see that the assumption made on page {> of that report can 

be inaccurate for long post-detection integration time,  in spite of 

a low pre-detection SNR. 

Ü In 
See, for example, Middleton, discussion on p. 821. 

1 
I 
I 
I 
! 

! 

i 

I 

! 

I 

i 

I 
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II. Povrer Series Expansion for LR Detection 

Here we shall derive the power series expansion which prescribes, 

the operations to be performed on the received signal by the optimum 

detector. The symbols and conventions used here will in general- 

conform to those used In Progress Report No. 8. The reader may refer 

to Section II of that report for a discussion of the basic assumptions 

and for other commeni  ertinent to this derivation. 

The received signal, in the form of a vector of time sampleSj, is 

v = s_ ■!• n 

where a is the "desired signal" and n is the noise. When the noise is 

gausslan with zero mean and covarlance matrix K, the averaged LR is 

given by 

^(v) = (expi- | s'K^s + s'K'-yX 

(1) 

(2) 

where ( )     Indicates a statistical average over the unknown signal 
^S 

parameters. At this point we shall restrict ourselves to the consideration 

of white noise backgrounds; in which case the noise covarlance matrix is 

diagonal. In this case the first quadratic form in the exponent in 

Eq. (l) becomes 
n 

1   -1 ? £ 'K s ä E 3i2 (3) 

1=1 

where H is the variance of the nolse;  s.  Is a sample of the desired signal 

at the time Instant t., and n is the total number of time samples.    The 

summation in Eq,   (3) is seen to be proportional to the total energy 

content of the desired signal during the observation time of the signal. 
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Since we shall only be concerned with frequency and phase as unknown 

signal parameters, the summation in Eq,  (3) will be unaffsctsd by the 

averaging operation  ( )   .    From tills argument, then, we can rewrite 
N S 

Eq.  (2; as 

1 

1 

^(v) = exp - £ l}f\] \exP ^l"1!)) (it) 

Using a power series expansion for the exponential, we have 

,   / 
^(v) « exp - j s'K^sl (l + (s'K^v) + ^ (s'^v)   v -^ (a'K^v)   + ... \ 

We shall be dealing with cases of "incoherent" signals (in the 

sense of Section II of the aforementioned report) in which the odd 

The powers of s'K" v go to zero in the averaging operation ( )   . - -   - \ /3 

averaged LR thus becomes 

%) - expj- ~ s'lfM (l + jf (s'K^v)   + -g (s'K'1^)   H 

We now take log ^(v) as the test statistic in the optimum detector: 

log ^(v) = - ^ £'K^s + I ((s "K"1!) ) 

+ 0(£6) 

Equation (?) is exact through 0(s ). In Eq. (7) and hereafter, the 

symbol ( ) will imply / \    . 

(5) 

(6) 

(7) 

i 

I 

i 

i 
I 

1 

I 
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III.    Deflections of Terms In the Power Series 

In any specific detection problem we would want to approximate the 

operation of the detector by one or more of the terms in Eq,  (7) involving 

the received signal v.    The contributions of the various higher-order 

terms to   log ^(v)   could then be neglected or replaced by suitable 

bias terms. 

In order to justify such approximations, however^ we must examine 

the changes in the various terms in going from the "noise-only- 

condition to the !! signal-plus-noisa" condition.    Here we shall calculate 

the change in the average values of the terms.    For convenience this 

change will be called a deflection and will be denoted by   AE     . 

In particular, the following deflections will be obtained in general 

.orm: 

AE 0(s2) AE ? <Wv 

AE 0^) AE £ (UV) - I ((£'KV)2
] 

(8) 

(9) 

These two deflections will then be evaluated for the three signal cases 

outlined in Section I. 

For future reference, we shall also obtain 

AE FT (^l) ) (10) 

This term is the most significant term in 0(s ). 
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Deflection of 0(s  ) 

Ws note that 

Us'K^v) / " (v'K"1^ s'K'M 

= v'K"1 /s s'\ K"1^ 

v' G v 

2 
Thus the dsflecticn of 0(3  ) is given hj 

AE 0(32) 'S+N 
I vt 0 v h J vi G v 

The first average gives 

E S+N I v' G v 
i /(a' + n') G(s + n)) 

i/s» G s\ +/s' G n\   + i/n' 5 n) 
2 \- - -/s  \- - -/S+N  ^ \-   /N 

i  J 

I tr (K 5)2 + I tr K 5 

The second average in Eq. (12) gives 

h j vi 0 V 7 2' 2 " 

tr K G 

Thus 

(11) 

(12) 

(13) 

ilk) 

(15) 

I 

1 
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Deflection of 0(;J
4
) 

We will now calculate &E 0 s V The derivation can be simplified 

by noting that the average   El   j contains    SXS terms,    S/N   terms 

and   NXN   terms,  and that the    NXN   terms drop out by subtraction in 

calculating the deflection.    Thus we need only calculate the   SXS 

and   SXN   terms.    From Eqs,   (9) and (11). 

AE 0(sh) = AE TTT ((Z'GV)2) -I (v' G v)2 

where 

-1 -1 
G = K    s s'K 

(16) 

(17) 

The deflection is calculated as follows; 

S S 

AE 0(3^) 

N 

77r{ (s' G s)    + 6 (s' G s)  (n' G n) 

1 
B 

S+N 

(s1  G s)2 + h (si G n)2 + 2   (s' G s)    (n' G n) 

1 /. 2 - r^/tr  (s s' G) + 6 tr 4 s'N  G 

S 

tr  ^X G) 

1 
H tr2(s s' G) +  1; tr  (K G )3 +  2 tr  (K G )2 tr (K G) 

Equation  (l8) can be simplified by noting again that, we shall be 

considering only white noise backgrounds,  for which    K = N I   .    Thvs, 

6 tr    /s s'\  G    tr (K 0))   =   ( ~ tr /s sA  GH  ) 

(18) 

(19) 
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Again noting that the averaging over frecuency and phase will not affect 

the summation, which is proportional to the total energy in the desired 

signal, we can write 

/ \ / \ 
^6 tr|/s s')  Gj tr (K G,))   =    /6 tr /s s«\ G ]tr (K G) 

« 6 tr|(s s^ G j tr (KG) 

= 6 tr (K G)2 tr (K G) (20) 

and now 

AE b(sy) 3  U^is s' 0) HT 
nO " \ tr2(E.Et G) - | tr (K G) (21) 

I 

Finally we make use of the following matrix relationship.   If 

matrices A and B are square and of the same order,  and either A or B is 

the tensor product of a vector with itself, then 

trn(A B) = tr (A B)n (22) 

(The pro*f of this statement is found in Appendix A.) In this case (s s') 

is such a tensor product and we can write 

S s 
mmJ1) "0t'•(ä=, G s s' 

*) -Htr (£ s' öj -|tr (Kff)3 
(23) 

The average ( ) applies to matrices G, and the overline average, 

applies to matrices (_s s1)- 

I 
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Broadband White Noise 

We shall consider only cases of broadband white noise with variance N, 

For such a case, 

K « N I 

2-:?££'-4 ^i8;) r 

r -   1 
b  - —r 

N 

(^')'?{<si^, 

(21.) 

Using Eqs,  {2\\) we have 

AE 

Thus 

0(s2) | tr (K G)2 

—^ tr /s s '\ 
2T       N" "" ' 

{2$) 

Similarly 

AE oih 
h\ ̂ Ul^^^v k 3k sh 

v=a 

■ -^ \ ^ \ (sis^ (aj sk) (3k si) >(26) 
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j    AE ö(^) ■^?^H ^^ 

"^l^i^'i (% ^ SiS^ ^ 3^ ^ S^ 

-  '-   ?. ZZ L s \ /s, St) A, SA 

All the summations are from 1 to n, the total number of time samples. 

We will also calculate the average £„ -rj UJS'K" v) ^j. This 

quantity is the most significant term in AE 0(s ) j the complete 

calculation of AE p(s ) will not be carried out here. 

f = ST ((£' 2 a)3) 

v=s 

(2?) 

/, „6 \u-4T7 h   i    j    k   ^    m   hiik*m, 6.' N\hijk^m J J / 
V, V« V  3. S.S .S. SpQ 

Thus 

The three specific signal cases outlined in Section I will now be 

considered in the following three sections. 
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.; 
i 

IV. Broadband Gaussian Stochastic Signal 

Let us consider the case in which both the noise and the desired 

signal are gaussian random processes, with tlat spectra over the same 

frequency band, Q rad/sec wide. If the signal has total average power 

A /2, then 

<££') 
A2
I (29) 

' 

From Eq, (25), 

AE 0(s2) •—*■ n 
8r 

(30) 

The number of samples is dictated by sampling theory: 

n n — T 
n 

« 2 $T (31) 

In Eq, (31), £ is the noise (and signal) bandwidth in cps, and T is the 

observation time of the received signal. If the spectral level of the 

noise is N  v"/rad/sec, 

Letting 

AE 0(s2) A^ 
—-rr-w 

m % 0 

JT (32) 

we write finally 

2N Q, 
0 

R. 
1 (33) 

(3l4) 
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Since R. is the pre-detection or "input" SNR, the deflection of the 

0(s ) terms in this case is seen to be the square of the input SNR 

times the observation time, normalized with respect to the inverse of 

the bandwidth. 

Now the deflection of O^ ) is calculated using Eq, (27). If the 

signal is a gaussian random process, 

(£ 
, S. Sj s, 
h i j K- 

; + /s. S.\/s.    S.   )   +   (S.     S. \/s. S.) hsiAs3 v + (;shsj/\si sk/ + \sh v 
(3$) 

Thus 

AE 

i 

o^)" -   1   ? ? ? y ■r   U    LJ    U    Li 

li! N4   h    i    j   k 

8NU   h    i    j   k 

3 (shsi)2(sjsk)2 + 6{Shsi)(sjsk)(sh3j)(3islc> 

(sis/\sksh)2 + 2(shsi)(sjsk)(3isXVh) 

"^3 ^ ZZ(s±s^(sfk)(sks±) 

3 ? ? ? (s±3) (S3Sk) (ök3i) 2r i j k N ^^ ^ X ^ 
(36) 

If the signal spectrum is white with total average power A /2, 

.6 
AE Oish) 

A 

16N3 

8N 3S3 
^T 

and thus 

AE 0{sh) = - R,3 6T 
1   - (37) 
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It is of interest to compare this result with Eq. (3I4), If.  R. is 

much smaller than unity, the deflection of 0(s ) may be considered 

2 
negligible with respect to the deflection of 0(s ). 

V. Narrowband Gaussian Signal 

In this section the desired signal is assumed to be a narrowband 

2 
gaussian random process with total average power A /?>  bandwidth 8.  ad/sec, 

and center frequency co rad/sec, where u may lie anywhere in a frequency 

band Q, rad/sec wide. For simplicity, the signal spectrum is assumed to 

be flat over & and the p.d.f. for co flat over 2,    These relationships 

are indicated in Fig. 1. The center frequency of the ß-baad is co . 

Signal 
spectral 
density 

^ u 

Figure 1 

The a.c.f. of the signal, a function of w , is 

A T 
(t.   - t.) = -TT sine (p, (t,   - t.) cos to (t, 
ri       y       2 xbvi        2 ci ^ 

(38) 

where 

and 

sine x = sin x 

ax 

I 2n 
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Averaging the right side 01 Eq.  (38) with respect to the p.d.f, of 

w   over the ß-band, we have 

(l £') "W sinc Ib(ti " V SinC ^i " tj^cos wo(ti " ^^f 
(39) 

FromEq.   (25), 

■üb 

AE 0(s2) -™^'Sinc2 lh{ti - tp sine2 l(t± - t^) cos ^(^ - t^) 

(1*0) 

As an approximation, for co » ß and w T » 1 , we replace 

cos M (t. - t ) by its average value, w, a 
0  1    .1 <; 

nd 

AE 0(s2) 
ION' 

^ ^ sine2 ^(^ - t^) sine2 f^ - t^)  (i|l) 

1  J 

The double suinmation is then replaced by a double integration 

T  T 
*h      ,.2 

AE 0(s2) 

where 

_ • 

16N     A 

. 2, 
» • -» 1 dtl da sinc ^.(t - a) sinc ^(t - a) 

0  0 
|T     JT 

A^ r   r      2 2 ■^ ^-w /    dx /    dy sinc   b(x - y) sine (x - y) 

0     ^0       Jo 

1 

ihZ) 

If the integration time is long with respect to the inverse of the 

signal bandwidth and the signal bandwidth is narrow with respect to the 

overall band of frequency uncertainty, that is^ (j)T » (|j T » 1 , 

then a reasonable further approximation is 
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i 

AE 0(s2) 

o 

-jlT 

or 

(ii3) 

The calculation of AE 0(s ) for ils  signal case is considerably- 

more involved than for the broadband s  al case considered in Section IVj 

therefore only the final result will be presented here, the details of 

the calculation being left to Appendix B. 

Again assuming that the signal is very narrowband and that the 

integration time is long, that is, ^T » (kT » 1 , the work of 

Appendix B shows that 

AE 0(3^) l R h I ($?)' + 4 (JT) 
2 Ri 

(lT)2 + 13.(lT) - R^'^T) 

m 
On comparing Eq. (kk) with Eq. (I43) it is seen that AE 0(£f)| 

r  pi 
depends upon a higher povjer of the input SNR than does AE 0(s )L 

was true in the broadband gaussian signal case. However, while 

as 

AE 0(s2) Oish) contains depends linearly upon integration time, AE 

terms which grow as the square of integration time. We see tnerefore 

that for any value of R., however small, the magnitude of the deflection 

) 9 
of 0(s ) can be made equal to or greater than that of 0(3 ) by making 

: 

the integration time sufficiently long. 



G -16 

Example 

As an example, let   R. = .1   and   b = .1 ,    From Eqs,  (itf) and (kk), 

AE 

AE 

Ü(S
2) 

Oish) 

(.01) JT 

(,ooo3)(Jr)2 + (.ooli) JT 

If we let JT «= 100 , we have 

f 9 1 AE 0(£ )J= 1.0 

AE OQ^iU 3.h 

And if fr = 200 , 

AE 

AE 

l(s2)] = 2.0 

0(sU)] = 12.8 

We see therefore that for this case of a narrowband gaussian signal 

whose center frequency is uncertain over a wider frequency band, terms 

0(3 ) and terns of higher order In Eq, (7) cannot be considered 

negligible simply on the basis of low input SNR. Such an approximation 

might be highly inaccurate if the post-detection integration time i.3 

long, as required in threshold situations. 

i 

T 

I 
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VI. Sinusoid of Unknown Frequency and Phase 

Here we assume that the desired signal is a sinusoid whose amplitude 

is constant over the observation time of the received signal, The phase 

of the sinusoid is unknown and its frequency is known only to lie within 

a frequency band Q rad/sec wide. For convenience, the phase and frequency 

are assumed to have uniform p.d.f.'s over 0,2n and over the ft-band, 

respectively. 

This case can be treated as a limiting form of the narrowband signal 

case considered in Section V if we let the signal bandwidth ^, ^0 . 

If ]), is vanishingly small, the sinusoid will have a constant amplitude 

over any single observation interval, and the amplitude will have a 

Rayleigh p.d.f. over the ensemble of all such observation intervals. 

The total signal power, weragjd statistically over the ensemble, is A /2 , 

It can easily be shown that the sinusoid will have an r.m.s. amplitude Aj 

therefore through second-order statistics (in s), this case is identical 

to that considered in Progress Report No. 8. 

From Eq0 (39), if \~^0  , 

,2 

(£ £') = \\ sinc I (\ - V cos "cA " V ihS) 

Letting b—)-0 in Eq, (I42 ) doea not  .ter the approximation embodied in 

Eq, (14.3), "nd 

The deflection of 0(s ) can be obtained by letting (j),—^0 (and 

hence b—>0 ) at appropriate points in the derivation in Appendix B. 

This procedure is carried out in detail in Appendix C, and only the 

results are stated here. From Appendix C, we have 

(I46) 
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(147) 

Again, if Eqs, (l;6) and (I47) are compared^ it is soen that the 

deflection of 0(s ) depends upon higher powers of the integration time 

o^2) when the and can become appreciably large with respect to AE 

integration time is made long. 

Deflection of Higher-Order Terms 

It is of interest to see the manner in which deflections of higher- 

order terms in the power series depend upon input SNR and post-detection 

integration time. For this purpose, the average E^^jCs'K" v) \ is 

calculated in Appendix D for the sinusoidal signal case. This term 

is the most significant contribution to AE p(s )  in this case for 

long integration time. From this result the behavior of corresponding 

terms in higher-order deflections is deduced. From Appendix D, 

h(fW'll^]\6^ 

and for a p -order term, 

(il8) 

(h9) 

\ 

I 

i 

? 
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VII. Conclugions and Remarks 

This report has considered, by mean,? of some specific cases; thcl 

question of the contribution o*:' higher-order terms in a power series \ 
i 

expansion of log ^(v), the ovtput of an optimum detector.       1 

\ 
The results of Section IV sh.-wp.d that if the desired signal is m 

gaussian random process with a flat spectrum over a know.x frequency 

band, the deflections of terms of all orders grow linearly with 

integration time and the higher-order deflections have as coefficienti 

progressively higher powers of the input SNR. Therefore when the 

input SNR is much smaller than unity, the major contribution to log l\ 

2 
is from the 0(s ) term and higher-order terms can oe neglected. This 

3 
was the approximation made by Tuteur in which the operation of the 

optimum detector for such a signal was represented by the lowest-order 

term in the series (equivalent to squaring the received signal and 

integrating over the observation interval 0,T). It is clear that this 

approximation is justified for low input SNR, regardless of the length 

of T. 

In Section.V the gaussian signal was assumed to be m. rrowband with 

an unknown center frequency, where the band of center frequ-mcy 

uncertainty was assumed considerably larger than the signal oandwidth. 
2 

In that case it was found that terms of higher-order than O^; could 

not bo neglected when the integration time became appreciably long. 

The same observation applies to the limiting case of a sinisoiJal 

signal, considered in Section VI.    In these It .ter two cases, thnn, if 

one were to construct an approximation to the optimum detector wivh the 

power series in mind, a certain number of higher-order terms in Eq.  (?), 

il) 
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and the corresponding operations on the received signal, would have to be 

incorporated into the detector. The number of terms to be included would 

depend upon the input SNR and the integration time. 

This is not suggested as a technique for constructing the optimum 

detector, but it is of interest to consider the implication of including 

certain higher-order operations. Suppose as an example that the desired 

signal is a narrowband incoherent signal whose center frequency is 

equally likely to be any one of m known frequencies. The lowest-order 

term in the series See Eqs. (?), (11)1 is then 

m 

i=l 

.th 
where G. is a function of the i  frequency. This expression indicates 

a quadratic operation on the received signal at each of the m frequencies, 

followed by a summation of all these quantities. The most significant 

0(8") term becomes 

m 

A/v. GV)2\ =-^yV G. v) 

Adding to these the corresponding terms at higher orders of s, it is 

see a that the optimum detoctor calls for the calculation of v' G. v 

at each frecuency, followed by a nonlinear operation on v1 G. v and 

finally a summation of the m quantities. This suggests band-splitting 

with a bank of m filters and detection of the separate filter outputs, 

which is the scheme one would intuitively choose to detect a narrowband 

signal with unknovm frequency. 

y 

I 
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1 

I 

Some recent results indicate that such a band-splitting scheme 

represents a very good apprcKimatioa to the optimum detector for such 

a signal.    Reports on these results are forthcoming. 

Appendix A     A Special Trace Relationship 

Matrices A and B are square matrices oi the same order.    We wish to 

show that if B is a tensor product of a vector b times itself, i.e., if 

then 

B = bXb = b b1 = ^b-b. 

tr(A B)2 = tr2(A B) 

Proceeding formally,, we have 

If 

and 

tr(A B)    = tr(A BAB) 

trJE   E  S A, .  B. . A.,   B, 
i     1    k ,]    ^ 

h=m . 

Ti   Z  E A,.  B. . A.,   B, 
9    .   V   hi   ii    jk   , 
i    j    k 

j    jk   km 

=   L   L   ZJ L A,.  B., A.,   B,. u    •      -1     hi    ij    jk    kh h   i    j    k ^    J 

h   i 

B.     = b.b, 
3-3        i  3 

(A-l) 

(A-2) 

ZZ  (?AhiBi,)(EAjkBkh) (A.3) 

; 

kh        k h 
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trUB)2- J   yjphi\^(Z^k\\) 
h     i 

•CL CAhlb,bh)(E EA   bkb) 
h    i 

= tr (A B) 

j   k 

(A-il) 

No special properties, such as symmetry, are required of the matrix A. 

In general, 

trUBf.    )       ItL   ...L    A.   . B.   . A. 

V^i^ 2   3 

\   12 12m 

. B A.        .    B.     . 
3 i31it X^$ 2m-l 2m 12ra12m+l 

A       A A B       B B.     . 
1112 131l4 12m-l12m 1213 XKS :L2m1l 

If 
B..   = b.b, 

tr(A B)m =    ZJ    L  A    .  b    b    | L   L A       b    b      ... 
\ i1   i2    H^ h ^H i3   i^   ^\ b ^Z 

X     ^   A. .    b.        L. 
i0    T  i0      "^Zm-l 2m    2m-l    2m 2m-l    2m 

(A-5) 

- tr (A B) (A-6) 

I 
I 
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Appendix B     Deflection of 0(s  )—Narrowband Gaussian Signal 

i, 

The total deflection of terms of order s*, as given by Eq.  (27), is 

AE 0(3^) -^-r  ESS  S/s^.s s \2 

- -H- S   E  E E (s s 
8r   hi    j   k 

SJV \sisj/ Vsksh 

.: 

—T ^ L   Ü   {S'S-\ (s.s.) (S, s.\ (B-l) 

For convenience the three terms in Eq. (B-l) will be considered separately. 

First Term 

The signal spectrum has total average power A /2 and is flat over a 

narrow band & rad/sec wide, centered at the unknown frequency u rad/sec. 

Since s(t) is a sample function of a gaussian random process. 

s, s.s ,3, /. SjS,   + s, s .s.s,   + s.s . s.s, haiaA;      \ hei afk T öhDo aiDk T ai0j 0hDk 
0) 

T sine lb(th-ti) cos "c(th-ti) sine ^(t-^) cos ^(t^-^) 

+ sine 5b(th-t  ) cos "c(th-t.) sine ^(t^^) cos %^±-\) 

+ sine Jb(
t
i-

t
1) 

G0S "c(ti-t   ) sine ^(^-tjj eos "c(th-tk) 

CO 

where 

I    * 1     cV: 

(B-2) 

(B-3) 
2n 
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The center frequency w has a flat p.d.f, ove1.'" a band 2 rad/sec wide, 

and the band is centered on the frequency 01 . Thus if the average is 

taken over w , 

sine Jb(th-ti) sine ^(t.-^) sine ^VVVV C0S "o^W11^1^^ 3, S.S .3,   )   ~     
h 1 j k/ 

f 
■■ ■■■-.. 

-r 

/ 

where 

+ sine lb(th-t. ) sine \{t^tk) sine ^VVVV cos Wo^th"ti"'tj+tkJ 

+ sine j^Ctj^t.) sine ^(^-tj^.) sine l(th-t .+^-1^) cos ^(VVV^^      ' 

'* ■ 

+ sine U (t,-t.) sine ^, (t.-t. ) sine i)(t,-t.-t.+t, ) cos a (t.-t.-t.+ts )      f ^bv h   2 ^   1   k -i-^ h   3   1   k/ oK h    j   1   k"'     1 

+ sine ^, (t.-t.) sine ^.(t,-t, ) sine ^(t.-t.+t,-t. ) cos co (t.-t.+t,-t, ) -t-bv 1    3' -tV h   k' ^ x    ^    h   k^ ox 1    3    n   k' 

+ sine (D. (t.-t.) sine E (t,-t. ) sine (j^t.-t.-t.+t, ) cos co (t.-t.-t.+t, ).     1 •^b   1   3 ro^ h   k/ -^ 1   .1   h   k ov 1   3   h   k'      | 

] 

2n 
cps 

0 

(B-I4) 

(B-5) 

I 
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Other cross-product terms from the square of the right side of Eq. (B-l|) 

contain cosine factors of the form    cos 2co (t,-t. )    or   cos 2co (t.-t, ) . 
ov hi' o^ j k^ 

Such terms vail go to approximately aero in the summation over h,i,j^k 

and are simply left out of Eq, (B-6), 

From symmetry considerations the first two four-dimensional sums 

in Eq. (B-6) will yield the same resultj the last three terras will also 

yield identical results. Thus only two summations need be carried out. 

Starting with the first term in Eq, (B-6), we have 

r"1 C  TT O p p p.- p 
LULL 3 sine (K (t.-t. )sinc(l), (t.-t, )sinc {p(t.-t.+t.-t. )cos w (t.-t.+t ...t. ) 
hV i k hi' -HTjk -^ h   i   j   k o^hijk 

JT      fT    |T    fT 

«•4 (16)1       dsl     dtl    dul    dv    sine b(s-t) sine b(u-v) sine (s-t+u-v) 

^0      ^0     ^o     ■{) 

JT   JT   JT 

^ 2I4 /    ds/    dt/    du   sine b(s-t) sine b(u-s+t-u) 

^0      -0      ^0 for    0 < s-t+u < JT 

^T    ^T    ^ T 

- 2k I    dsl    dtl    du    sincVs~t) 

-ri       ^n        'n 

(B-7) 

'0      '0 

b^T    bjT 

-2h 
5T a, -;f 

dxl      dy    sine  (::-y) 

0 0 

for    0 < x < bffi T 

^2h   ^U  (b^T)     =    ^ (JT/ 
b2  131 b 

(B-Ö) 

-,/-. 

'See Reference  L,  Table li57.  Integral No.  27, 
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where b e f. /1 . The approrinr.tions are good for long integration time, 

that is, for 

IT ^ JbT ^ 1 

Taking the third term, in Eq. (B-6). 

EZEE 2 sine ^(t^t^sinc fb(t;]-tk)sinc ^(^-t^sinc lh{\~\) 

sinc^(th-ti+t;5-tk)eos ^i^^^) 

p |r |r JT 

^ 16/  dal dtl dul  dv sine b(s-t)sinc b(u~v)sinc b(t-u)sinc b(s-v)3inc (s-t+u-v) 

4) ^0 T •() 

^16/    daj dt/ du sine b(s-t)sinc b(t-u) for   0 < s-t+u < (j)T 

b^T    b(j5r    b^T 

B -rl    dx     dy     dz sine  (x-y) sine (y-s) 

t        0       /0 

bjT   b$T 

^~r  I    dxl    dy sine  (x-y) 

0       0 

(B-?) 

for   0 < y < b(f T 

16 (blT) 

b 
(B-10) 
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Thus the first tenn in Eq, (B-l) becomes 

or 

\ I Z SE/s s s s s 
M N4 h i j k \h :L ^ k/   lt.' N4  6I4  b 

1 

1 Wa  61  h        h^ 

 r L   L   L  L ( '. s,s 
Ij.' NU h i j k U t V V rVh"i"j"k 1^^ b      b 

(B-ll) 

I 

32 

Second Term 

The average /s s.s.s y is given by Eq, (B-Ii), and (s s,\ and (s-s. \ 

are obtained using Eq. (39), Section V. Multiplying these together to 

form the second term in Eq. (B-l), and summing over h,i,j,k, we find 

that only four of the cross-products will produce non-zero results. 

Summing the first of these four cross-products, we have 

o 

-T £   E   E Esinc VV^sinc lb(t -t^sinc ^t^yt-t^cos ^(VV^^k^ 
• ON     h   i    j   k ^ 

.  sine 5b(th-ti)3inc J(th-ti)cos <*0{\~\) 

. sine ^.(t .-t, )sinc ^(t.-t  )co3 w (t^-t, ) 

8 
^—r   EEES sinc2^b(th-ti)5inc2^b(t -tk)sinc J(th-t.)sinc J(t-tk) 

TO h i 3 k 

• sine 3)(t,-t,+t .-t, )co3 co (t,-t, )cos a (t.-t, ) 
J- 

v h   1    T   k crhi' 0 Vi    k' 

COS   CO   l't, -t,+t .-t,   ) 0 • h   i    j   k 
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6Ii.8Nu   h i j k 
sine |b(th-t. )3inc äb(t;)-tk)sinc J(th-ti)sinc lii.-t^) 

2 
• sine tö(t.-t.+t.-t, )cos w (t,-t.+t.-t, ) 

•^   h   1    i   k' 0   h   i   i   k 

_A 

128 

+ sine Jb(th-t1)sinc $b(t -tk)sinc pt^^-^jsinc f(t.-tk) 

.  sine ^-t.+t.-t^cos co^t^-t^+^jcos ^(t^l^j^k^ 

g Jr    ^    ^    lr 
—j- (l6)f   ds j   dt j   du/   dv sine u(s-t)sinc b(u-v)ainc(3-t)sinc(u-v) 

0       0       0       0 

•  sinc(s-t+u-v) 

|r   fr    Jr 
—^ r (16)/    dsj    dt/    du    sinA(s-t) sine 'j-t) 
128.8NU        / 

'0      ''O      ^0 
0 < s-t+u < ^T 

A 

128 
 r(l6)(^T)/    ds/    dt    sine^s-t) sinc2(s-t) 
.8NU /        / 

,8 

128'8N 

,8 

(16) (^T) 

0       l) 

2 

^ (fT)2 

ÖÜJ1*? 
(B-12) 

Again the approitimations assume    ^T    »   b^T    »    1  .    The  second of the 

four cross-product terms will also yield the result given by Ec.   (B-12). 
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The third cross-product gives 

32 J h??ksinc VWsinc l>{th\)s±™ ¥\-^-\+\)oos vvvvv 
•  sine S, (t,-t. jsinc S(t, -t. )cos co (t,-t. ) 

J-bh    i -i-Mi   i' o^h    x 

- sine E (t.-t, )sinc ^(t.-t, )cos w (t.-t, ) 
-3-bv j   k -^  j   k o    j   k ' 

^£££C sine ^(t.-t Jsinc 5b(th-tk)sine Jb(t^)sinc ^(t.-^) 
61;.8N-hi jk ~u   ^    3' -ö- n   K' -o ■ n   i' M-  I 

. sine 5(th-ti)sinc ^(t -tk)sinc ^(t.-t -th+tk) 

COS  CO  (t.-t .-t,+t, ) 
ov i    j    h   k' 

cos co (t.-t.+t.-t, ) + cos w (t,-t,-t.+t, ) 
oN h   i   j   k o   n   1   j   k' 

H'i IT 

A 

128.8N n (16)/    dsl    dt/    dul    dv   sine b(t-u)sinc b(s-v)sinc b(s-t)sinc b(u-v) 

'0 y0     JQ 

sine (s-t jsinc(u-v )sinc(t-u-s+v) 

^  $T  ^ 

^ r /    ds/    dt/    du    sine b(t-u) sine b(s~t) sinc(s-t) sinc(s-t) 
mh\     I     \ 

sr\       Jr\        Jr\ 'Q      JQ)       y0 

sine b(s-t) sine b(t-u) sine b(s-u) 

0 < s+u-t <\1 

(])T      ^T      ^T 

k       T       I I 2 2 2  r /    ds|     dt/    du    sine b(s-t) sine b(t-u) sine  (s-t) sine b(s-u) 
61iNL' 

0     -^o     ■'o 

|T    ^T 

ds/    du    3inc^b(s-u) 
61jN 

I (B-13) 

'0     -'o 

^See Reference Li,  Table 156,  Integral No.  7, 
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\ i 

em "fl 
0 
mi®) (B-lll) 

I 

The fourth cross-product term will also yield the result given by Eq. 

(B-llj), and we have 

^ ZZZZ i^) (V.) M 
.8 

32N V o 
(lr)2 + ^(^) 

or 

^WM^)(^^-^k 

Third Term 

The third and last term in Eq.   (B-l) is 

(B-15) 

2^   i j k \1 J/   ^J 
sk; (sksi 

L  EEE sine ^(^-t.) sine ^(t.-t^cos ^U-t^) 
l6r   i j k 

sine lh(trtv) sine |(trtk) cos "J^-tJ -b^j   -k j'-k- 'j^k' 

• sine 1^-^) sine ^^-t.) cos Wo(tk-ti) 
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-3 £ E£ sine ^(t.-t  ) sine Jb(t -t  ) sine ^(t.-t. ) 
32N-J   i j k ■bv i   y XbK j  ^k Lb^k   i' 

■ sine |(t.-t,) sine Kt.-t, ) sine (|)(t, -t. ) 

•    eos^^t,-^) + i eos Sco^t^) + | cos 2^(1^) 

JT f    p 

 -*  (8)1  dsl dt  du sine b(s-t) sine b(t-u) sine b(u-s) 
6hr     j      /     j 

«'n       -ri       -'n '0       ^0       y0 
.  sinc(s-t) sinc(t-u) sine(u-s) 

T     I 

T 

T 

~       A6  f      r 3 2 = x I    dsl     dt    sine b(s-t) sine  (s-t) 

t)      "'0 

8N 3ß3 

R.^JT) (B.16) 

Thus the total deflection of 0{s  ) ±3  approxmately 

AE 0(s4 6 1 

1 p h (|T)2 + 4- (?T) 

R^^T) (3-17) 

1 
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Appendix C     Deflection of 0(s)—Sinusoidal Signal 

The deflection for this case is obtained by letting   b = 0   at various 

steps in the derivation of Appendix B, 

With   b = 0   in Eq,  (B-7), 

I1     3 

^E EE 3 sinc2^(th-ti+t .-tk) cos^^-t^t ,.tk) ^ 2hl   dsl 

Jr    JT   ^ 
dt/    du    (1) 

'0 T; ^0 

for    0 < s-t+u < JT 

^T      s      fT-s+t 

2ii'2|    dsl  dt      du    (1) 

0      0   -'o 

fT      S 

I48      ds    dt JT   -   3   +   t 

^0        0 
^T 

1481    ds 

^0 

21 
iTs-^ 

16 ((FT N3 (C-l) 

Letting b = 0 in Eq. (B-9), we have 

^r    (jjT    fr 

EEEE2 3inc2J(th-t.+t.-tk) cos2«o(th-t.i+t.-tk)^l6|    dsl    dtl    du    (1) 

v     JQ     ^0 

^  (OT)-' (C-2) 
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Thus we have a*. 

t.'N     h i i k \        J 

2-     V ..öMlr^ 
6ii.l4i N V 

i 

and 

MN11   h i j k\h i ^ k/       3   1 
(C.3) 

Letting    b = 0    in the derivation leading to Eq.  (B-12) leaves that 

result unchanged.    Letting   b = 0   in Eq.   (B-13), we have 

■. 

8 
r L L LIJ sine f(^-t.-t.+t. ) sine J(t -t.. ) sine f(t,-t  ) 

32-8N4   h i j k 

COS   Oi  (t.-t.-t.+t.   )   COS   Oi   (t,-t, )   COS   CO  (t.-t,   ) 
oi    jhk ov h   i' o^jk' 

A8 

6Ü? 

ST  Jr 

dsl    du (1) 

'0    4) 

48  m2 
6I4H V4 

0 

l\h'®)2 
ic-h) 

This is identical to the result given by Eq. (B-12), thus 

^EZEE^a^v^s.^'-R^r) (C-5) 
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The derivation leading to Eq. (B-l6) is not affected by letting 

h = 0 , thus 

^ 6) 

Finally, combining Eqs. (C-3), (C-5) and (C-6), we can write 

(0-7) 
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Appendix: D     Deflections of Higher-Order Terms—Sinusoidal Signal 

r    fi *! 
The largest contribution to   AE p(s  )   for this case is made by the 

average 

E, 

The desired signal s(t) is (though a limiting case of zero bandwidth) 

a sample function cf a gaussian random process. Therefore 

(3,8,3,3, 8,8    )   " ( S, S.   sTTs^  S» S      +   s7s~  S, S,     S»S_   +   ...   +   S,S,    i.S,    8,8 \hijk*m/\hilTk^m       h j   i K   * n hki*jm 
/« c 

(D-2) 

•)(• 
The right side of Eq.   (D-l) contains a total of   1'3'S *• 15 terras.      Since 

the signal bandwidth is vanishingly small, 

6 

^hVAV«) a V ^os coc(th-ti) C0S £üo(trtk) C0S wc(t^tm) 

+ cos a (t.-t.) cos w (t,-t. ) cos m (t,-t  ) cvhj cvik cx*m 

A +   ...  +  cos  w
c(th-tk) cos  ^(^-t^) COS  U^t.-tL 

A6  /I 
COS   0Ü   (t, -t.+t .-t,+t»-t    )   +   COS   w   (t, -t.+t ,-t, -t,+t    ) cv h    i    j    k   ^    m' cv h    i    j   k   *    m' 

cos O) (t,-t.-t .+t1+t«-t  ) + cos co (t,-t -t.+t. -t-+t  ) c^hijk^m' cxhijk*mj 

...   +   T-   COS   CO   (t.  -t, -i-t,-t,+t ,~t    )   +   COS   CO   (t, -t, +t   -to-t.+t    ) UL        cvhki'5     3   m' cv h   k   i   *    j   ra 

COS   CO   (t.-t.  -t.+ta+t   -t    )   +   COS   to   (t.-t, -t.+t»-t.+t    ) c^h'V'i ^ J    m h^k-V^-ym^ 
'    c 

See Laning and Battin,    pp.  82-83',  for a discussion of moments of a 
multivariate normal distribution. 

äik       I 

\ /        6.' N     h i 1 k ^ m   N        J ' "*' 

I 
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I 
I 

a —.   sine i(t.-t.+t.-t, ttj-t ) cos cü (t.-t.+t.-t.+t««t ) 
22 *v h   i   j   k   *   nr o   h   i   j   k   *  m' 

+ sine 5(t.-t.+t.-t, «t.+t ) cos Cü (t.-t.+t.-t, -t.+t ) •J-v h   i   j   k   ^   m' o   h   i   j   k   *   m' 

+ ... + sine JCVVVVVV cos "o^h^k-V^"1^^^ 
J 

(D-3) 

The right side of Eq, (D-3) contains aixty terms, but it can be shown that 

the terms can have only fifteen distinguishable arguments and that the 

fifteen types of term each occur with multiplicity four. Hence Eq, (D-3) 

can be rewritten with only fifteen terras and with a coefficient A /8 

instead of A /32 j when this modified expression is squared and used in 

Eq. (D-l); we have 

E, si fafht 
,12 zzzm 

6U.6JN    h i J k * m  L 
8ine2|(th~ti+t;)-tk+trtm)coS

2coo(th-tiHrtk+trtin) 

+ sinc^-t^-tk-ytj oos^^-YYt^VtJ 

s 

+ ^KW-h^r1^ cos2ajo(th-tk-ti+trt3+tm) 

+ cross-product tenas (D-li) 

All the cross-product terms will yield approximately zero when the 6-d 

summation is carried out«    Due to symmetry of the arguments, the fifteen 

squared terms in Eq,  (D-I4) will all yield the same 6-d sum.    Thus, more 

simply, 
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.12 

6i;'6jN     h i j k ^ m L 

|T  |ft  $T |r  fr fr 

sinc^C^-t^tj-yt^t^) cos^^^-t^t^yt^-^) 

-b   'o  -fa   •'o  -'o  Jo 

dx   sine (s+t+u~v-w-x) (D-5) 

i 
i V. 

I 
•J 

The integral in Eq, (D-5) was approximated by replacing sine (s+e=e-x) with 

6(s+...-.x) , a Dirac delta function. The integration is tedious and is not 

reproduced here. The result is 

1 ((S-KS)6) 15 A 
12 

128.6iN 
(610(^1 (Jr) 5 

J2 35 Vs^)5 

o 

Thus 

Extension to Higher-Order Terms 

Calculation of the average 

Er ^{^\f D ^ 2 li 6 

requires approximation of an integral of the form 

X     X 

f     f      2 
dx,,.. dx sine (x, ••X-+X--X,+., .+x ..-x ) 

1  j  p    ' 1 2 3 a    P-l P 

A        A 

/ dx...,/ dx 6(x.-x0+x,-Xi + ...+x ,-x ) 2 v 
/  1  /  p ' l 2 3 U    p~l p 

(D~6) 

(D-7) 

I 
I 

I 
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For the values of p considered in this report, the value of V was 

found to be 

V ^r^-xP"1 ,  p= 2,ii,6 (D-8) 
f + 1 

This writer has been unable to prove that Eq, (D-8) holds for values of p 

greater than 6, but we may conjecture that it does hold. If so, then for 

long integration time, 

I 

« 

^•rV) 2P 

P 
j \vh-3'5-"{v-i) 

(fr^"1 
,  p even (D-9) 

(D-10) 

It can be seen from Eq. (D-10) that the fractional coefficient is always 

smaller than unity and monotonically approaches zero as p becomes very 

large. 
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List of Symbols 

R (T) B autocorrelation function of narrowband signal 

S = set of unknown signal parameters 

s = desired signal vector 

s(t} = desired signal process 

T = observation time of received signal 

v ■ received ,'ignal vector 

v(t) = received signal process 

. _-. 

A2 

-K-        -■   signal power •: 

\B,    >   = a matrix 

G = coefficient matrix in optimum detection 

5 = coefficient matrix^ averaged over signal parameters 

I = identity matrix 

K = noise covariance matrix 

*(v) = likelihood ratio 

N = noise power 

N = noise spectrum level in v /rad/sec 

n " number of time samples 

n B noise vector 

n(t) = noise process 

0(x) = "at most on the order of x" 

R. = pre-detection or "input" signal-to-noise ratio 

i 

! 

i 
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o-la 

5(x) 

i 

% 

CO 

U 

Dirac delta function 

bandwidth of signal frequency uncertainty in cps 

bandwidth of narrowband signal in cps 

bandwidth of signal frequency uncertainty in rsd/sec 

bandwidth of narrowband signal in rad/sac 

center frequency of narrowband signal in rad/sec 

center of band of signal frequency uncertainty in rad/aec 

; 

■i 

E H average value of x 

AEfo(x)l= "deflection" of 0(x), i.e., change in average value of 

0(x) in going from noise-only condition to signa] -plua- 

noise condition 

tr A    ■"     trace of matrix A « sum of diagonal terms 

/ )     -     conditional statistical average—only noise present 

statistical average over unknown signal parameters 

conditional statistical average—signal and noise present 

Abbreviations 

a.c.f. 0     autocorrelation function 

LR        n     likelihood ratio 

p.d,f. •»     probability density function 

SNR signal-to-noise ratio 
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I, Introduction 

A previous rfcport dealt with the problem of optimally detecting a 

sinusoidal signal of unknown phase whose frequency was known only to lie 

within a prescribed band. The results of that investigation were 

negativej they indicated that the sinusoid was no more detectable than 

a gaussian random signal having a flat spectral density over the same 

frequency band. Those results, however, were viewed with suspicion, 

2 
Later work showed that the small-signal approximation used in truncating 

the power series for the optimum detector structure would not hold for 

long integration times and that this faulty approximation accounted for 

the pessimistic results. 

In this report a different approach is taken to the problem of 

optimally detecting a signal of unknown frequency.    This work leads ^c 

an accurate approximation to the optimum detector structure for cases of 

large post-detection SNR.    In order to keep the development simple and 

to avoid questions of non-gaussian statistics, the desired signal is 

assumed to be a steady sinusoid with known amplitude and phase    and 

unknown frequencyj the unknown frequency is assumed to have a discrete 

probability distribution.    The extension to more realistic signal models 

is straightforward, but involved. 

■)(•„ Qiven the frequency of the signal, the phase structure is assumed to 
be completely known. By definition this is termed a "coherent" signal, 

since {a)   / 0 . 

H-l 
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11. Likelihood Ratio Detection of a Signal with anUnknown Parameter 

The optimum detector for the detection of a signal in a background 

of random noise is a likelihood ratio (hereafter LR) detector. If the 

desired signal contains unknown parameters, the detector must compute a 

LR which is statistically averaged over all the possible values of the 

signal parameters. If v is the received signal in the form of a vector 

of time samples and the signal contains only one unknown parameter 0, 

the averaged LR is given by 

£(v) - ^(v,0) 
'). 

where L(v,9) is the LR for a particular value of 0. 

If the parameter 0 has a discrete probability distribution over a 

finite set of values, 

m 

^(v) - ^ pi L(vJOi) 

i"l 

where m is the total number of possible values of 0 and p, is the 

probability of the i  value. In general the quantities log L(v,0.) 

can be generated more conveniently than L(v,6.) . With this in mind 

the average LR can be written as 

JH 
t{v) * )     pi exp log L^) 

i=l 

Thus the optimum detector calculates the quantities log L{vtQ^)  , 

forms the sum in Eq, (3), and compares this with a pre-set threshold k. 

11 .he threshold is exceeded, the decision is made that the desired 

signal is present in the received data. This test is indicated by 

(i) 

(2) 

(3) 

i 

T i 
■ 

! 
T 

... 

I 
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i 

i 

m 

I pi sxp log L(v,Oi) I   k 

H- ,3 

(I*) 

The deciaion scheme cen be visualized in geometric terms if the test 

quantities log LCv^O.) are taken as coordinates in an ra-dimensional 

hyperspace. The space is divided into two regions, which may be called 

the "signal" and "no signal" regions. The boundary between these two 

regions is determined from Eq, (k) by the equality 

ra 

^ Pi exp 

i-1 

log Uv,^) (5) 

For a given received signal v, the coordinates log L(v,0.) define a 

point in the m-dimensional space. If the point lies in the "signal" 

region, the decision is made that the desired signal is present with 

noise. If the point lies in the "no signal" region, the decision is 

made that noise only is present,   A specific case will new be considered. 

- 
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III. LR Detection of a Coherent Sinusoid - Tv;o-Frequency Case 

III.I The Decision Plane 

If the desired signal is a sinusoid with known amplitude and phase 

and with a frequency « that can take on any one of m discrete valueäj, then 

from Eq. (3), 
m 

l{v)  ^^ Pi exP 

i»! 

log L(v,w ) (6) 

As an example^ let m = 2 and Pn s Po * ^ • Equation (6) now gives 

£ (v) = Ö- exp log 1(7,0^) + ^ exp log L(V,ö ) (7) 

Using Eq, (5), the boundary between the two decision regions is given by 

I 

si 

\  exp log LCV,^) + 7j exp log L(v,a32) (8) 

or 

log L(v/o ) = log ^ 2k - exp log LCv,^) (9) 

Threshold curves given by Eq, (9) are plotted in Fig. 1 for several values 

of k. It should be noted that the curves all become asymptotically parallel 

to the coordinate axes. In practice one of these curves is chosen to 

divide the plane into "signal" and "no signal" decision regions. For a 

received signal vector v, leg L(v,cO and leg Uy,^) are calculated 

and these quantities define a point in this decision plane. If the point 

lies above or to the right of the chosen threshold curve, the decision is 

made that the desired signal is present. If the point lies below and to 

the left of the curve, the decision is made that noise only is present. 

T 

I 
! 

I 
! 

! 

I 
I 
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A } log L(v„co2) 

I 

I 
-5 

FIGURE 1 

Optimum Threshold Curves 

Two-Frequency Case 

Threshold curves: 

Asymptotes: 

log L(v,£0 



■■H WmBSSSSS^mt. -    ^ ^   jaägaiiMMi»IMBMBiillllllll»illllllllllFii i i 

H-6 

If the number of possible values of the frequency is made larger, the 

decision plane of Fig. 1 is replaced by an n-dimensional decision space; 

and the threshold curve is replaced by an ni-dimensional decision surface. 

III.2 Detection in Gaussian Noise 

If the noise is additive and gaussian with a covariance matrix K, the 

LR for a given value of signal frequency is 

L(v,ü). ) °  exp | s'(ax ) K"1 s(coi) + 3'{wi) K"
1 v (10) 

For convenience let 

and 

Li = Uv,^) 

S. = s(ü>. ) 
-1  -' l' 

„. 

Then, for the case in which the signal frequency may take on one of two 

discrete values, the test quantities are given by 

log 1^ = - | ^'K'1^ + ix'K"1! (11) 

log Lg = " 2 -2'-' -2 + -2'-" - (12) 

Thus the operation of the optimum detector in this case consists of a general 

cross-correlation of the received signal with the desired signal at each 

of the possible signal frequencies. 

In order to calculate the detectability of the signal, the conditionaD 

p.d.f.'s of log L, and log L? must be obtained,  Since the noise is 

gaussian and Eqs. (11) and (12) describe linear operati'ns on the received 

signal, the quantities log L,  and log L? are gaussian random variables. 

The required mean values of log L, are calculated as follows: 

I 
I 
I 
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1   _.   w-1* 

(log L-, / 
\        Vs^N -hl'^l^-l'-"1^'^/ S^N 

fii'^i^i^1-^-1'-'1^ 

hi'S'^i 

log L-, 
SjtN 

hi'r\+ 4'ü'
1
^ 

+1'), 

. is.KS^^r1^ 

The variances of   log L^ are 

(13) 

ilk) 

(15) 

var. 
^^.Us^s^h^-faflJ 

= (iiT1! l1^'1^-) 

= ^'K-1 K K"1 ^ 

^•r'ii 
(16) 

^ 

: 
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var 
S1+N log L1 

H - 8 

| *if\ + iiT1^^))") - J^iT1!) 

^ ^l-T1!! + lif1* l^flsJ 
/N 

-l(hlf\)2 + h1^3-!8-!^^ 

+ ^E-\R^K\-li^K\) 

k:^\ (17) 
.• <■ 

var, S2+N log ^ | Sl'if^l + ii'^^+n) 
21. T      2 

/N 

-1    s2 ii'r^iiiT1^+ ^if\^+ ii'rYsu'l. r^i 

i 

If the noise is assumed to have a flat spectrum over a frequency band 

encompassing all possible values of the signal frequency, 

llK-ls-2 it 3i(VsA) 
i=l 

and 

h^ \ i y, h\ 
1=1 

(19) 

(20) 

- 

where N is the variance of the noise, 
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If the spectral level of the noise is No v /rad/sec, then from 

results of sampling analysis, 

n 

N iZh^'^h^jr «^^ 
i=l 

(21) 

where T is the observation time of the received signal. The zero result 

in Eq. (21) follows from the fact that s1(t) and s2(t) are sinusoids of 

different frequencies. 

Similarly, 
T 

1 

(22) 

0 

It will be convenient to define a detection index: 

T 

dts2(t) W 

where s(t) may be either s. (t) or s2(t), since the signal is assumed to 

have the same amplitude at either frequency. It should be noted that the 

detection index is proportional to the power in the receiver signal and to 

tne observation time and inversely proportional to the spectral level of 

the noise. This detection index may also be regarded as the post-detection 

SNR. 

With the aid of Eqs.   (19) through  (23),  the  averages in Eqs.   (13), 

(lb) and  (15) nay now be written as 

log L\     =  -£ (214) 
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Similarly, 

Similarly, 

log L 
L/S1+N      2 

\log L, 
d 
2 

.log L 2/       ' 2 

log L, 

log lr 

S1+N 

.+N 

Q 

2 

var. log L. 

var 
S.+N 

log Lr 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

x 

i 

var 

VN 
lOg    Lr (32)- 

To construct the joint p.d.f.'s for the test quantities,  the correlation 

coefficient is required: 

1 
3 log L.  + £ 1 T d 

log Lo + ö d  ri 2/N 

1     Ir-1/    ,\   „-1 

\      /.- 

4 3  'K    s0 

(33) 
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Thus the test quantities log L. and log Lp are uncorrelated, and, since 

they are gaussian random variables, independent. With the following change 

ol' variables, 

X, = log L^ 
j.      J, 

x2 = log L2 

the joint p.d.f.'s can be written as 

f(x1,x2/o) = — exp 
2nd 

,(x1,x2/s1) =   e:cp 
2nd 

f{^,xJs9)  =   exp 
x       2nd 

H ^  /    d 
+ lxn + 2" x1 + ^ j ■ j-2 

2d 
(3li) 

(35) 

(36) 

The centers of these three density functions are plotted in the 

decision plane of Fig. 2)  together with a typical optimum tiireshold curve. 

It is particularly interesting to note that if the threshold curve remains 

fixed and the detection index d becor.es large^ the precise shape of the 

threshold curve near the origin of the decision plane becomes less important 

with regard to the conditional probabilities of error, This is because 

the region near the "corner" of the curve becor.es a region of steadily 

smaller probability measure with respect tc the three p.d.f.'s as d 

increases." With this in rind the decision schcr.c may be simplified when 

d is large by replacing the optimum thresholc' :urve with its straight-line 

'The mean value cl r  rh,  +. 
a/2, and a standard deviation equal to y. 
each, of the density functions becomes r.arr 
value. 

■z has a magnitude equal to 
:  as d becomes larger, 
.tr. resoect to its mean 
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,f, log Lc 

(x0) 

asymptote = log 2k 

2 

^(^^V-i^ 

coritour of constant 
probability density 

K 

i 

FIGURE 2 

Optinum Threshold Curve and Its Band-Splitting Approximation 

Two-Frequency Case 
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asymptotes, also shown in Fig, 2. The decision scheme corresponding to 

this new threshold curve can be stated as follows: If either log L. 

or log Lp is above the threshold value log 2k ,  the decision is made 

that a signal is present. Thus a threshold test is performed at each of 

tho possible frequencies at which the signal may appear and a final 

decision about the presence of the signal is made on the basis of the 

individual tests. This type of decision scheme ■'.■all be referred to in 

a general way as  a "band-splitting" scheme." As d is made increasingly 

large, the region (shown shaded in Fig. 2) betv.'een the optimum threshold 

curve and the band-splitting threshold curve, makes a steadily smaller 

contribution to the conditional probabilities of error. Therefore it can 

be stated that the optimum detector becomes asymptotically a band-splitting 

detector as the detection index d is made increasingly large. 

A different situation prevails as d approaches zero, however. Figure 3 

shows, for a lev; value of d, the arrangement of centers of the p.d.f,'s 

with respect to a typical optimum threshold curve. As d is made very small, 

the shape of the threshold curve for large magnitudes of log L, and 

log Lp becomes less significant in the determination of the error 

probabilities. Only the shape of the threshold curve in the region of the 

closely spaced p.d.f.'s is important, and a straight line with slope ~1 

can serve as a good approximation tn the curve in that region. Such a 

straight-line threshold is also pictured in Fig. 3. 

It is shown in Appendix h  that if log /L(V1UJ)')  is expanded in a 

power series and the lowest-order coherent tern in tho series is used to 

"The terr. "band ;r;lit* i.-.g" is more a-'jpropriatc where a continuous 

frequency band is being u^arcl.oi for a signal by -cans of a bank of band- 

rcrar'iU'i J;
;
 a ;:rec": a; c.n-e 
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f(x1,y /s ) 

small-signal 
approximation 

A log L2 
i     (x0) 

d 
2 

A 

optimum 
threshold 
curve 

'(xi;x2/o) 

-f- 

d/2 
->- 

log L^ 

-T--\ f(x1,x2/s1) 

+; j 

contour of 
constant 
probability densit; 

T 

I, 

•X,    i 

I 
1 

FIGURE 3 

Optimum Threshold Curve and Its Small-Signal Approximation 

Two-Frequency Case 
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s 

approximate the operation of the optjjmun detector, then that approjdmation 

corresponds precisely to a straight-line threshold as pictured in Fig, 3. 

That is, for this case of a coherent sinusoid having one of two known 

frequencies, a power series analysis with small-signal approximations leads 

to the test 

log 1^ + log L2   ^   2 log k - 2 (37) 

It is ncm clear that the approximation leading to Eq.  (37) is valid only if 

the detection index d is much smaller than unity, and it must be noted that 

it ij not sufficient that the pre-detection SNR be small,  since d also 

depends on the integration time, as shown by Eq,  (23).    In the threshold 

situation, where d is made much larger than unity by means of a long 

integration time, the band-splitting detector will provide a better 

approximation to the optimum detector. 

The detector structure implied by Eqc   (37) will be referred to 

hereafter as a "sum-and-teat" detector. 

III.3    Detector Probabilities - Tvro-Frequency Case 

The conditional false-alarm and false-dismissal probabilities will be 

(calculated for tbe optimum detector and for the sub-optimum detector 

derived by the small-signal analysis of Appendix A.    Signal detectability 

curves will then be obtained. 

Optimum Detector 

The conditional false alarm probability a can be visualized wix-h the 

aid of Fig.  20    It is the probability that the point  (log L,,log L«) lies 

above or to the right of the optimum threshold curve, given that noise 

only is present.    From Eq.   (3M, 

1 
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a »  dx^  

J 2v^ 
log 2k 

exp 1    d 
2dx2  2 

log 2k 
r 

exp 
2nd 

-00 

-> CO 

Xj^ 
r 
i cbc. exp 

^ V2nd 
log[2k>-exp(x2)] 

53p 2) 

(38) 

After a change of variables, 

2 
a «= dv exp 

^ ^ log 2k 

2\ 
v 
T 

00 

^-.log^k-exp^v-^ 

The double integration in Eq, (39) cannot be carried out in closed form, 

but it may bo numerically evaluated to any desired degree of accuracy. 

To facilitate computations in this report, the optimum threshold curve 

will be replaced by the band-splitting threshold for large values of d, 

A graphical estimation of the detectability for low values of d will then 

be carried out. For the band-splitting approximation, the conditional 

false alarm probability is given by 

CO 

1      i •'     v2' a "v^'dv exp'' T 
w^ 

V? 
log 2k 7^ log 2k 

a ^r 1-1 1 + i-log 2k 
■vd 

iho) 

f 

I 

I 

1 
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where 

fix) * dt exp t 
T 

2\ 
(ia) 

The function (|)(x) is the Normal Probability Integral,  available in tables. 

The conditional false dismissal probability is the probability that 

the point  (log L ,  log L0) lies to the left of and below the optimum 

threshold curve in Fig.  2.    Given that the  two signal frequencies are 

equally likely,  this probability can be calculated with respect to either 

one of the signal-plus-noise distributions.    Thus 

log 2k" 

ß =      d* 
J. - exp 
2nd ' 2dr2  ' 2 

j.og[2k-exp(x2)] 

dx   --=; exp 
"V2nd 2d xn  + 1T? (142) 

.-CO 

After a change of variables, 

\J2n 

1   -,      0,    -, d 
^log 2k In 

du    exp 
o\ 

1 

^ + "^log|2k-e.xp(? +Vd1' 

/      2\ 
i u du    exp    - -A- 0*3) 

...CO 

Again,   Cor the band-splitting approximation the . alse dismissal probability 

is auuroxlmated by 

./dn    1 
—, io.-   .'If • 

V      f. Xl 
I     v- 

ex« 
V -n 

(WJ 

lor 
Vi 

1    •■   $ --, log Jk (h5. 
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From Eqs. (I4O) and {h5),  'the conditional detection probability 1-ß 

is plotted in Fig, I4 as a function of yd for fixed values of the conditional 

false-alarm probability a. The curves are estimated for the region of 

1-ß below 80 per cent. Detection probabilities on the order of 99 per 

cent or better will usually be desired, and this is well within the range 

where the band-splitting detector provides a very accurate approximation 

to the optimum detector. 

Sum-^And-Test Detector 

From Eq,  (3I4) and with the aid of Fig. 3, 

I 
X. 

1 

1 
1 

a *        du 
2nd' 

exp 

4(d/2 i- log k) 

After a change of variable, 

2\ u m 

Similarly, 

a> 

,   ( dz exp 
/      2 

z 

V57 

V2d 
^-- -log k 

1                                        \1 
1 

a - *■ 
L. 

! . ^J. log kj (hi) 

ihQ) 

From Eqs.   (hi) and  (I48),   values of    1-ß    are plotted in Fig.   h as  a 

1'unotion of   yd  for thi'ee  fixed false-alarm rates.    It is  seen that  the 

I 
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conditional detection probability for this sub-optimum scheme steadily falls 

away from that of the optimum detector as tlie detection index increases. 

As the uncertainty about the frequency of the desired signal is increased 

to a larger number of possible values, the difference between the 

performance of the sum-and-test detector and that    of the optimum detector 

becomes more pronounced. 

IV,    Detection of a Coherent Sinusoid - m-Frequency Case 

IV.1   The Detection Space 

The work of the previous section has shown that in the detection of a 

coherent sinusoid with an unknown frequency which can have one of two 

values, the optimum detector becomes asymptotically a band-splitting type 

of detector as the post-detection SNR becomes large.    If the unknown 

signal frequency is equally likely to have any one of m possible values, 

the decision space becomes an m-dlmensional hyperspace, and the threshold 

surface dividing the space into "signal" and "no signal" regions is 

obtained from Eq.   (15), with   L(v,0. ) = L(V,ü), ) 3 L.  , as 

m 

i £   exp  (log L.) = k ih9) 
1=1 

As the detection index is made very large and a received signal is tested, 

two different situations will occur, depending upc- the presence or 

absence of a signal; 

1) If no signal is present, all m of the test quantities 

log L. will have large negative mean values, equal 

to - d/2 (see Eq. (2h) . 

2) If signal is present, m-1 of the test quantities 

will have mean values equal to - d/2, and one test 
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quantity will have a mean value equal to    d/2   See 

Eqs.  (26) and (25)1. 

Thus it is of interest to examine the shape of the threshold surface in 

regions of the hyperspace where the test quantities have large negative 

values.    If Eq.  (1$) is solved for one of the test quantities in tems 

£ the others, 

exp(log L) = mk - exp(log Lg) - ...  - exp(log L^) (SO) 

or 

log L. « log mk - exp(log Lg) - ... - exp(log L^) (SD 

When log L?,.,. t  log L  have large negative values, the exponentials 

in Eq, (5l) become very small, and 

log L^ lc' mk (52) 

Thus the asymptotes of the optimum threshold curve are hyper;-ilanes 

perpendicular to each of the m coordinate axes of the decision space. 

These asymptote planes are analogous to the asymptote lines of the two- 

dimensional case. 

It is seen then that as the detection index becomes large the precise 

shape of the threshold surface near the origin of the decision space 

becomes less important with respect to error probabilities and the optimum 

threshold surface may be approximated by a set of m hyperplanes. The 

decision scheme corresponding to this approximation can be stated as 

follows: If one or more of the test quantities log L., log Lp,... 

IOR L are above the threshold log m k . the decision is made that a L m 

signal is present. If all m test quantities are below log mk, the 

decision is made that noise only is present. As  in the two-frequency case, 

this detection schnne vail be referred to as a "band-splitting" scheme. 
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It can be stated in general, then, that the optimum detector for the 

detection of a coherent sinusoid whose unknown frequency is given by a 

discrete probability distribution becomes asymptotically a band-splitting 

detector as the detection index d becomes large. 

For small values of post-detection SNR, the work of Appendix A shows 

that the optimum detector can be approximated by a sum-and-test detector. 

For the m-frequency case the approximation leads to the test 

m 

E 
i=l 

log L.  <   m log k (m -1) 7f (53) 

The threshold surface corresponding to this sub-optimum scheme is given by 

m 

)     log ^ = m log k -  (m -1) TJ tth) 
i=l 

and this is seen to be a hyperplane in the m-dimensional decision space. 

This is analogous to the straight-line threshold shown in Fig. 3 for the 

small-signal approximation in the two-frequency case. 

IV.2    Detection Probabilities - m-Frequency Case 

Optimum Detector 

For large values of d the optimum detector will be approximated by the 

band-splitting detector to simplify the computation of the error 

probabilities.    For small values of d the detectabili+y will then be 

estimated. 

The conditional false-alarm probability is the probability that one or 

more of  the test quantities exceeds the  threshold    log mk  ,  given that 

noise onl>  is present.    That is, 

J 

I 
I 
I 

i 



 . r ...- j. ... iriiirMBlitlir»i"iltfxffil WtTtTtt 

K -23 

a n p [At least one of the test quantities log L, is 
above its threshold, given that noise onl^ is 
present 

» 1 - P    [All the test quantities   log ^   are belff 
their thresholds, given that    no-se c„__j 
is present 

The conditional false-dismissal probability is 

ß = 
P    [All the test quantities    log L.    are below their 

thresholds,  given that a signal is present at 
any one of the possible frequencies] 

It is shown in Appendix B that 

a = 1 -  (1 - a. ) 
m 

and 

where 

ß = ß^l - a.) 
m-1 

(55) 

(56) 

aH  = P    [log L.    is above its threshold, given that no 
signal is present at the frequency c ] 

ß,  = P    [log L,  is below its threshold, given that a 
signal is present at the frequency w.l 

The probabilitit3 a   are assumed equal for all i « l,2,,.,,m, and the 

probabilities ß    are assumed equal for all i = 1,2,,,.,in.    The error 

probabilities  a and ß can be bounded as 

and 

a <   m a. 

ß<    Pi 

(57) 

(58) 

These bounds are tight for m a. « 1 .  It is  seen from Eqs. (5?) and (58) 

that if the threshold for each log I,,  is hell fixed and the frequency 
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uncertainty is increased, the false alarm probability will be approximately 

proportional to m, while the false dismissal probability will remain 

approximately unchanged. 

The conditional p.d.f.!s for   log L.    are needed.    Let   x.  = log L.   . 

Then, from Eqs.   (2h),   (25),   (26),   (30),   (31) and (32), 

and 

f(x./o or s.) 
i -      -J 

i/ j 
V2nd 

exp I    1 
" 2d K ^ t1 

21 
J 

m 

f (x /s  ) = -—i exp 
A/2nd 

1 

\ 

d 
xi "? 

(60) 

If the threshold for each test quantity is    log mk , 

C  ) 
a. 

X 1 
< 

\h IN 
\   ) 

1 -llf i   -logmk 
I V 4       Yd ' 

(61) 

From Eqs, (55); (56) and (6l), the conditional detection probability 1-ß 

can be calculated aa a function cf v^ for a fixed value of the conditional 

false alarm probability a and for any number m of signal frequencies. 

Results of these calculations fer a = .01 and m = 1,2,14,8 and 128 are 

shown in Fig. S.    It can be seen from the figure that the set of detection 

curves for different values of m becomes a set of parallel straight lines 

as "^d becomes large, with the detectability becoming poorer as m. increases, 

as would be expected. The asymptotic form of the detectability curves 

for small error probabilities can easily be derived using the bounds of 

Eqs. (5?) and (58). For small values of ma, the bounds become very good 

approximations and using Eq, (57) together with Eq. (61), one can write 

I 

I 

I 
i 

I 
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5lf Z-1 
log mk (62) 

The conditional detectability 1 - ß is to be calculated as a function of 

,-i 
Yd   for a fixed value of a, therefore let   a = a'   where a* is the chosen 

fixed false-alarm rate.    Now, from Eq.   (62), I 

^iog mk -^ rMi   u *\ 

m (63) 

where J" (z) denotes the "inverse Normal Probability Integral," that is, 

the number x for which z = (|(x) See Eq. (I4I) . 

From Eqs, (58) and (6l), an approximation is obtained for the 

conditional false-dismissal probability as 

I 
f 

I 

o ^ 1 l-l •—log mk 
v? Hk) 

Inserting Eq,   (63) into Eq.  (6ii),  one obtains 

f     r ,     * 

The conditional detection probability is then approximately 

1 ■ - ß^ 
1 +1 V^ -r-l 

- |  ^ 1 m >                         i 

i Vd    »    1     j s L J 

The right-hand side of Eq.   (66) is seen to be of the general form 

(6$) 

(66) 

M c Vd1 + c. (67) 
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where C., C,., C„ and C, are constants. This general form represents a 

linear function of y^ on the normal probability scale of Fig. 5. Thus 

the asymptotes of the detectability curves for the optimum detector, 

given by Eq, (66), plotted for various values of in or various values of 

•it 
a   are a family of parallel straight lines, the horizontal displacement 

of each lin1 being determined by the  quantity   (jT (l - 2a /m).    If a 

is held fixed and m is increased, 

I -1 2airl 
m 

—^oo        as   m—y«5 

* 4. a = const. 

Thus the detection curve moves steadily to the right as m increases, 

representing steadily poorer detectability with increasing uncertainty 

about the signal freauency, as is seen in Fig. 5.    The same trend is 

observed if m is held fixed and a   is decreased; that is, 

r1 2a 
m 

#i 

as    a—tO 

m ■= const. 

This is the trend exhibited by the optimum detector curves in Fig. k for 

the two-frequency case. 

Sum-And-Test Detector 

For the sura-and-test detector,  the test quantity is 

m 

y 

tu 

E iogLi (68) 

i=l 

When noise only is present, each of the quantities log L. has a moan 

value - d/2 and a variance d, Thus 
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f(y/o) 
Y2nmd 

exp 1 rcd 
K +   2 2mdl 1 

When a signal is present at one of the m poGsible frequencies,   m-1 

of the quantities    log L.    will have a mean value - d/2    and one will 

have a mean value d/2 .     Thus 

f(y/s   ) =    ; : exp}  
1       V2T!md 2md 

-,2 

y +  {m-2% 

(69) 

(70) 

If y is compared with a threshold   m log k -  (m-l) s- ,  the conditional 

error probabilities are given by 

1 
2 

, d    ! m   n      . 
7   log k (71) 

Curves of conditional detection probability 1 - ß as a function of 

yd are shown in Fig. 5 for the sum-and-test detector. The curves are 

plotted for a --■ .01 and values of m = 1,2,14,8 and 128. As was seen for 

the optimum detector, the signal detectability with the sum-and-test 

detector becomes poorer as m increases. An expression for 1-ß as a 

function of \'d  and any fixed false-alarm rate a = a  and for any value 

of m can be found as follows: From Eq. (71), 

*-  1 
a = 7 l-l 

\ |/Itfn 
l) - log k (72) 

Thui 

-, m 
log k r-1, d_ 

(73) 
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From Eos, (?] ) and (73); 

/ 
r 

1 - ß - 1 1 + 5 - r1^ ■ ^a  ) > (7li) 

*-!/ 
where 0" ( ) has the same meaning as in Eq. (63). The right-hand side of 

Eq. (yii) is seen to be of the general form of expression (67) and thus 

represents a linear function of Yd on the normal probability scale of 

Fig. 5. Since Yd enters Eq. (7I4) in the form Vd/m , the slope of the 

detectability curve vail vary with m^ decreasing as m increases. Thus if 

a family of detectability curves for the sum-and-test detector is plotted 

for a fixed value of a, the slope of each curve will approach 7,ero as m 

becomes increasingly large, as is seen in Fig. 5. The horizontal 

displacement of the curves is governed by |r (l - 2a') and thus a family 

of curves plotted for a fixed value of m consists of a set of parallel 

lines, with the detectability becoming steadily poorer as a" is made 

smaller; this is seen in Fig. Li. 

Figure 5 shows that as the uncertainty about signal frequency increases, 

the performance of the sum and-test detector declines more rapidly than 

that of the optimum detector. In the operation of the sum-and-test 

detector, an increase in the number of possible values of the signal 

frequency requires an identical increase in the number of noisy correlator 

outputs to be suimed before the threshold test; thus the post-detection 

SNH varies inversely with m, as is seen in Eq. (71).  However, the 

^ptir.um detector, when visualized in terms of its „syinptctic form, the 

band-splitting detector, effectively searches out the "best" (that is, 

the largest) of the m outputs and then uses this in the threshold test. 
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I 
Increasing m simply increases the number of test quantities among which 

the detector must search^ but the detector will still seek out the "best" 

output for use in the threshold test. As more outputs are to be examined, 

the conditional false alarm probability increases^ therefore ohe threshold 

must be adjusted slightly upward to maintain the same false alarm ratej 

this change in threshold level leads to a slightly lower conditional 

detection probability, 

A useful basis for comparison of the optimum detector with the sum- 

and-test detector is that of pre-detection SNR or post-detection integration 

time required for a desired level of performance. This comparison is made 

in Fig, 6 in a plot of r = d  /d , vs, m , for a ^ ß = .01 , where D      r sum' opt      '       r > 

d   = detection index required with the sum-and-test 
sun detector for error probabilities a = ß = .01. 

d   = detection index required with the optimum 
^   detector for error probabilities a = ß = .01, 

Since the detection index d is seen from Eq. (23) to depend linearly upon 

the pre-detection SNR and linearly upon the integration time, the ratio r 

may be interpreted as either a ratio of required input SNR for a fixed 

integration time or a ratio of required integration times for a fixed 

input SNR. It is seen from the figure that the ratio r increases 

indefinitely as the number of possible values of the signal frequency 

increases. 
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FIGURE 6 

Comparison of Optimum Detector with Sum-nnd-Test Detector; 

Ratio of Required Detectic-. Indices for    a =  ß -j  .01 



H-32 

V.    Conclusions and Comrnents 

The •work of this report has shovm that the optimum receiver for the 

detection of a coherent sinusoid with a discrete frequency distribution 

becomes asymptotically a band-splitting detector as the oost-detsction SNR 

is made large.    The band-splitting detection scheme is exactly eoulvalent 

to the classical method of maximum likelihood for testing a statistical 

hypothesis.      This can be seen if the band-splitting threshold test is 

written in the following form: 

max   log L(v,a), )    ^   log mk 

"i 
or 

max   L(v^co. )    <   mk 
a. 
i 

The method of maximum likelihood is not generally an optimum decision 

strategy in any sense but gives satisfactory performance in many cases 

where insufficient a priori information is available to allow construction 

of an optimum strategy.    It is moreover a decision strategy that one would 

intuitively choose to detect a signal of unknown frequency.    It is 

especially satisfying to see that the  optimum-detector approach,  as 

followed in this report,  also leads to the use of a maximum likelihood 

detector and to see that this detector is very nearly optimum in the 

range of post-detection SNR which is  of particular interest. 

This work can be extended directly to the  case of an incoherent 

signal whose  frequency (or center frequency) is given by a  discrete 

probability distribution.    For such a  case the threshold test would again 

be given by Eq,   (Lj) and the threshold surface by Eq.   (5), with    0.   = u. 

in both cases.    The individual  test quantity   log Lfvyo  )    generally cannot 

I 

Reference li provides a comprehensive treatment of the subject of 

hyp o t he si s t e s t i rv;. 
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be obtained in closed form for an incoherent signal; however^ in a weak- 

signal situation   log L(v,co. )   can be expanded in a power series and 

satisfactorily approximated by a quadratic form.    This cjiadratic form 

would of course have non-gaussian statistics, but as the observation time 

is made long, the statistics would become gaussian by the central-limit 

theorem.    Thus for     weak received signal and a long observation tine, the 

m-frequen'-y incohe     t signal case can be handled by much the same 

procedure as is outlined in this report.    The form of the optimum detector 

would again approach that of the band-splitting detector for large post- 

detection SHE. 

If the unknown signal frequency is given by a p,d,f, over a continuous 

range of values, the test quantities    log L.    form a non-enumerable set 

and the optimum decision scheme can no longer be visualized in terms of a 

coordinate space.    It can be seen, however, that as the freqvnoy 

distribution becomes continuous the band-splitting detector becomes a 

band-sweeping detector, which calculates    log L(v^w)   as a continuoue 

function of a) over the band of frequency uncertainty; if this function 

exceeds a preset threshold at any value of co, the decision is made that the 

desired signal is present.    The specific problem of detecting a narrowband 

gaussian signal with unknown center frequency will be treated in a later 

report. 
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AppendLx A     A Small-Signal Approximation to the Optimum Deoector 

In the optimum detection of a signal with unknown parameters, the 

detector must calculate the average LR 

£(v: exp 

\ 

| s'K"1^ + a'K^vl 
\ 

(A-l) 

where { ) implies / ), . If the exponential in Eq. (A-l) is expanded in 

a power series^ the average over signal parameters taken term by terra, and 

the function log i(v)   expanded in a second power series^, the result is 

log ^(v) = - i (k'JfV) + 4'if1!/ + | "(S'KS)^ 3 IK^V + 0(s
3) 

(A-2) 

In the vjeak-signal situation, the major contribution to   log ^(v) is from 

the coherent term   (s'K~ v) .    As an approx:.mation, the terms of the order 

£   can be replaced by their averages taken with noise only present.    These 

1 
averages, together with the term - * {s'K s ) , are then taken as bias 

terms in thrnshold test. The three bias terms are thus 

Vi) hi 
i  3 

tr i/s 3i)   K'-: 
(A-3) 

I 
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i   /       i   ' 

/ 
v'K^s s'K^v 

 _N_ 

v'K   (£ s') A   v 

N 

-D.vi r1^1)?1 

i    D 

Ir | K K^/s s'\ K"1 

ij 

= tr   /s s '> K 

M N 

I (i'i-\ 

i    3 

itr(VS\/s'\  K"1' 

ij 

1 ^^(v)^"1 

(A-ii) 

K^r1^) (A-5) 

Therefore, 

log  ^(v)^   ^S'^KS - I (S')  K'1^ (A-6) 

If the  signal is a sinusoid of known arn.plitude and phase with an unknovm 

frequency given by a discrete distributim,  then 



*> 

n 

E Pi s(wi) 

If the ra frequencies are equally probable, 
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(A-?) I 
1 

ra 

/s 
\- 

s( CO. ^i 
i=l i=l 

(A-8) 

If, in addition, the noise is -white vith variance N, 

m     m 

^'V*SiLk'l-Tr,l Zk'^i 
i=l 

2-m N 
i=l 3=1 

(A-9) 

Since s.  and s    represent sinusoids of different frequencies. 

^ s.'   s • = 0 
N -i    -j 

k=l 

i-H 

i = J 

(A-10) 

Thus, 

m 

log ^(v) S . ' V   -  75- 
—X   — u IT. 

1 = 1 

[l 1    d 
(A-11) 

Froi.i Eqs.   (11) and   (12), 

T   \ 

( 1 

1-1 

leg :,;  ^ (A-12) 
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Therefore the weak-signal approximation leads to the threshold test 

m 

^ log L. ^ m log k - (m - 1) 

i=l 

(A-13) 

As an example, let   m = 2 .    The detector then performs the threshold 

test 

log 1^ + log L2    %   2 log k - :£ 

If log L. and log Lp are considered as coordinates in a two-dimensional 

decision space, the curve dividing the space into "signal" and "no signal" 

regions is given by- 

log L,  + log L,, = 2 log k - TT 

This is seen to be a straight line with slope -1. 

(A-lh) 
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Appendix B   Error Probabilitios for a 3and-Solittinp; Detector vdth 

Independent Outtjuts 

The conditional error probabilities are derived for a band-splitting 

detection scheme.    The following events are defined; 

I 
I 

S   = Event that noise only is present 

S,  = Event that signal is present with frequency w,,  i = l,2,,,,tm 

E   = Event that all m cutouts lie below the fixed threshold value 
o 

E.  = Event that the i™ output exceeds its threshold value, 
i = 1,2,., ,,in 

False Alarm 

The conditional false alarm probability is given by 

a = P  [at least one output exceeds its threshold value, given 
that noise only is present] 

i=l 
1 - PlVV (B-l) 

If the m outputs are independent, the probability of an event E^ is not 

affected by the presence or absence of signal at any frequency other than u, . 

Thus 

?{\ßo) = P(E./Sp (B-2) 

The right-hand side of Eq.   (B-2) is seen to be the conditional false alarm 

th 
probability for the threshold test at the i' frequency, that is 

th P(S /S,W) =  a    =■ P  [the i      output exceeds its threshold,  given 
that    no signal is present with the 
frequency cJ.l (B-3) 
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Thus, fromEqs.  (B-l),   (B-2), and (3-3), 

(1 - a^ 

1=1 

If dj  has the same value for i = 1,2,..,,111, then 

a = 1 ~ (l-a^f 

False Dismissal 

The conditional false dismissal probability is given by 

ß = P [all m outputs lie below the fixed threshold value, 
given that the signal is present at any one of the 
possible frequencies! 

- P(Eo/S1 + S2 +  ... + Sm) 

(B-Ii) 

(B-^) 

(B-6) 

If all m outputs are independent and have the same mean and variance, the 

probability of the event E   in the presence of signal is independent of 

the signal frequency.    Thus 

?{yS1 + S2 +  ...  + Sm) - PCE^S.) i = 1,2,...,m      (B-7) 

From Eq&. (B-6) and (B-7) and the definition of E , 

ß = P(VSi) 

Since the outputs are independent, 

ß ^T?(E;ysi) 

i c 1,2,,..,m 

P(E1 , E2 , ..., E^ /St)   i = 1,2,...,m 

(B-8) 

i ■=■ 1 2    ir (B-9) 
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P(E   /S.) = ß   = P [the j     output is below its threshold, given 
J J that a signal is present at the frequency co I 

I 
I 

and for i / j , 

P(E//S, ) = P(E."/S.") = 1 - a, (B-; XV / 
1 

The first equality in Eq, (B-10) follows from the fact that the event E 

is independent of the presence or absence of signal at any frequency 

other than u.. Since S. is assumed to have the same value for all 

j = 1,2,,,,^   and a, the same value for all j = l,2,.,.,m , Eq. (B-9) 
J 

can be rewritten as 

P ■ P/I - V m-l (B-ll) 

1 

1 
i 
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List of Symbols 

d = detection index or post-detection SNR 

K = noise covariance matrix 

k = a threshold 

^(v»^) = likelihood ratio, given the signal frequency co. 

^(v) = average likelihood ratio 

m = number of possible values of the signal frequency 

N = noise variance 

N = noise spectrum level, v /rad/sec 

n = number of time samples 

n = noise vector 

0(x) = "at most on the order of x" 

r = ratio of detection indices 

s = desired signal vector 

s(t) = desired signal process 

T =  observation time of received signal 

v = received signal vector 

a » conditional false-alarn probability—noise only present 

a =  a fixed value of a 

0 =  an u.:k. CV.T. signal parameter 

ß = conditional  false-dismissal probability--signal and noise presen'' 

^(x) =  I.'ormal Probability Integral 
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£"" (x) = Inverse Normal Probability Integral 

co. = a signal frequency 

tr A = trace of matrix A = sum of diagonal terms■ 

( ) •= conditional average--noise only present 
N 

/ \ = conditional average—a signal and noise present 

Abbreviations 

LR = likelihood ratio 

p.d.f.    o probability density function 

SNR ■ signal-to-noise ratio 

I 

i 

1 

I 
I 
I 

P 
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Figure 1   PUFFS Sonar System 

■ 

5 

I. Introduction 

The description of the PUFFS sonar system which follows applies to the 

block diagram of the system found in Fig, 1, 
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The electrical outputs of the transducers are passed through identical 

amplifiers and filters in each channel.   The frequency response characteristic 

of the amplifier and iliter combination is chosen to more-or-less enhance 

(1) 
the signal-to-noise properties of the received signal,v ' The amplifier 

output in the upper channel contains a signal component generated by a I 
target in the vrater and a contaminating noise component. The amplifier 

outpu-1 'n the lower channel contains a delayed version of the signal in the 

upper channel in addition to a noise component. 

The outputs of both amplifiers are then processed by Delay Line Time 

(2)  (3) 
Compressors (DELTIC), which are described in the literature. JiK-'/   A 

DELTIC has two modes of operation, the loading mode and the storage mode. 

In the loading mode, the DELTIC samples the clipped version of the 

input signal at uniform intervals of time. The sample pulse circulates 

around an acoustical delay line and appears at the output just before the 

next sample is taken. The next sample pulse then circulates around the 

acoustical delay line with the previous sample pulse, and the process is 

th 
repeated, At the beginning of the K  sampling interval the first sample 

pulse has recirculated and processed an amount of time almost equal to a 

sample period, Vihen the (K + l)  sample is taken, the first sample pulse 

is discarded. Each time a new sample is taken, the K  previous sample is 

discarded so that the acoustic delay line holds the previous (K-l) samples 

in the proper time sequence, but with their time scale compressed by a 

factor K. 

I 
In the storage mode the DELTIC merely recirculates K pulses through 

the acoustic delay line without the precession encountered in the loading 

mode. The acoustical delay is Increased "lightly to accomplish this, and 

the input samples are discontinued. 
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1 

I 

In the PUFFS system shown in Fig. 1^ DELTIC 2 is operated continuously 

in the loading mode, DELTIC 1 is operated alternately in the loading and 

storage modes. The loading mode lasts for K sample periods and the storage 

mode for K sample periods. 

During each sample period occurring in the storage mode time of 

DELTIC 1, the sequence of positive and negative unit pulses from both DELTIC 

units are multiplied and the products summed. In this fashion an 

approximation to the correlation function between the signals in both 

channels is obtained. 

The nonlinear tracker is also described in the literature, ^ The K- 

point correlation estimate is smoothed and fed to a device which measures 

the area of the correlation function for a given time interval centered to 

the right of a given time coordinate^ and subtracts from that the area of 

the function for the same time interval to the left of the given time 

coordinate. If the sign of the difference is positive^, the time coordinate 

is shifted in the positive direction a fixed amount, and the same measurement 

is taken on the K point correlation estimate generated during the following 

storage-mode time of DELTIC 1, For a negative difference, the tracker time 

coordinate moves the fixed amount in the negative direction for the next 

measurement. 

In tliis iashion the tracker automatically seeks a time coordinate for 

which the output of the gate circuit has an average value of zero. The 

tracker output should then be a good estimate of the time at which the peak 

of the correlation function for ^(t) and ^(t) occurs, and therefore an 

estimate oi  the relative time delay between the signal components in both 

channels. 
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At least two analyses to determine the random bearing errors generated 

by the PUFFS system have been carried out, ^''^ '   Ostrander and Rae assijme 

linear processing of the input signals, vdthout clipping or sampling. They 

obtain a relationship for the random bearing error generated by a gate 

circuit centered at the peak of the correlation function. In their analysis 

the width of the gate is assumed to be small relative to the correlation time 

of the signal. The tracker operation is not considered in the analysis. 

In reference (6) the infinite clipping is mentioned, but sampling is 

not considered. The gate circuit has a width approximately equal to the 

correlation time of the signal and the nonlinear tracker operation is 

included in the analysis. The analysis in reference (6) also contains a 

treatment of the problem of determining maximum bearing rates. If the 

target is moving such that the bearing rate is constant, the operation of 

the W0X-1A tracker produces a steady error between actual bearing and 

estimated bearing. In reference (6), the bearing rate that causes the sum 

of the steady error and three times standard deviation of the random 

component to equal the bearing error for maximum output of the gate circuit 

is defined as the ma:d.mum bearing rate. This seems to be a useful rule-of- 

thumb definition. 

In follovang sections, the effects of infinite clipping, sampling, and 

the nonlinear operation of the tracker are combined and analyzed to 

determine the random bearing error. The results are compared to those 

given by Ostrander and Rae in order to evaluate the degradation caused by 

clipping and sampling. 

! 

I 
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II. Correlation Estimate of the DELTIC 

From Fig. 1, the outputs of the amplifiers follovrlng the hydrophones 

are given by a(t) + a,(t) and s(t-ö) + n?(t) respectively. It is 

assumed that the frequency response characteristics of both amplifiers are 

adjusted to enhance the detection of tha signal components.   The outputs 

of the infinite clippers are given by 

x(t) »= sgn ^s(t) + n1(t)^ 

^(t) = sgn /s(t-5) + n2(t)\ 

(1) 

(2) 

As e:qplained in the previous section, the output of the sampler and 

recirculating memory of each DELTIC is actually a time-compressed series of 

pulses. The sampler obtains samples T seconds apart and these pulses are 

recirculated so that K pulses are compressed into one sample period. 

For DELTIC 2,  which is continuously operated in the loading mode, the 

compressed output may be expressed by 

A 
(m + l)T - kAJ - y (m-lOTJ (3) 

For DELTIC 1, the operation is alternately in the loading mode and the 

storage mode. Since computation of the estimated cross-correlation function 

only takes place in the period for the storage mode, the compressed output 

of interest is 

x (m + 1 )T kA - X - kT ih) 

In addition, 

and 

k,m = 0,1,2....,(K- 1) 

T = K A (5) 
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The polarity coincidence indicator and suiiirner in Fig.  1 operates on 

the pulses in each interval T of the compressed functions x   and y   so as 
c    c 

to produce a running estirnate of the correlation function of the clipped 

signals x(t) and y(t). The estimate is given by 

R(nff) 

K-l 

IE ^c 
k=0 

(m+ 1)T - kA 
A 

(m+l)T - kA 

K-l 

K L 
k=0 

-kT J (m - k )T1 (6) 

m = 0,1,2,...,K-1 

1 
I 
1 l 

I 
1 

The relationship of R(mT), hereafter designated by R , to the properties 

of the functions at the inputs of the infinite clippers in Fig. 1 is found 

by substituting Eqs. (l) and (2) into Eq. (6) and finding the mean value of 

the result: 

u 1 
R 
m 

K-l r 

| V £ sgnM-kT) + n (-kT)l sgn^s(mT- 5 - kT) + n2(mT-kT)l (7) 

The value of each term in Eq,   (?) is fiven by the well-known inverse 

(7 ) 3ine relationshipv'    found in Eq.   (8). 

R - arcsin < 
n 

(S + N1) 

s         (nff _ 6)[ 
17 ^(S + ]l0)

i/Z    0 
(8) 

In Eq.   (8) S, N,, and N„ ire signal and noise powers respectively and p Id s 

is  the normalized autocorrelation functiun Tor the signal after the spectrum 

shaping by the amplifier in Fig.  1.    It is assumed that ^(t) and n?(t) are 

uncorrelated,  and that signal and noise are  gaussian and stationary. 
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If the noise powers are equal and if S « N as is the case for 

threshold detection, Eq. (8) reduces to 

R 
ra I 1^ -5) (9) 

in " 0,1,,..;K-1 

-; 

From Eq. (,9) it can be seen that the expected value of tie K-point 

correlation estimate is very simply related to the autocorrelation of the 

signal for threshold situations. 

III. Expected Gate Circuit Output 

The K-point correlation estimate derived in Section II is actually a 

time series. This time series is smoothed to a continuous curve before it 

is applied to the gate circuit of the tracker. For the purposes in this 

report, it will be assumed that the K-point correlation estimate is smoothed 

by a triangular interpolating function. The input to the gate circuit 

is then 
K~l 

(t,-^ R f 
ra 

m=0 

where 

f(a) = 

HT - m 

1 - la 

(10) 

a < 1 

a > 1 

(11) 

The. function f (a) is shown in Fig. 2, 
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Figure 2       Triangular Interpolating Function 

i 

The output of the gate circuit is defined by 

G+t 

F(tg) i R(t) dt +  /  R(t) dt 

-G+t 

K-l 

in=0 

G+t 

m dt + m - m dt 

K-l 

E 
m=0 

m 

-G+t 

G+t 
-m 

f (a) da +    f(a) da 

-G+t 
• m -m 

(12) 

Using tlie result in Eq, (9) for « « 1 , v;e find that the expected value 

of the oulput of the gate circuit is given by 

'V 
K-l 

m=0 

Gtt 
-m -m 

f(a) da + 1 f(a) da 

-G+t       t 
-^p-£ - m    -^ - rr. 

(13) I 
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Also of interest later in the system analysis is the slope of EjF(t } 

at the primary null response of the gate. The primary null response occurs 

for t <Zz6 .    The slope is computed for tuo cases, 5 being an integral 
D 

multiple of T, and 6 being an odd half-integral multiple of T, For these 

cases the nu]l response occurs exactly at t =■ 6 . Thus 

•A 

dP 
dt 

g 
t =5 
g 

K-l 

- £ V P (mT-ö) 

m=0 

f  - m 
JG + 5 + f m - 2f 5 rjp - m ilk) 

If G « T , the value of Eq. (llj) is greatly determined by "ohe shape 

of the interpolating function, and since the choicp of this function is 

arbitrary, the results would not be very useful. If G is an integral 

multiple of T, the value of Eq, (1I4) is not dependent on the shape of the 

interpolating function, as long as the function is zero for integral values 

of a. 

If w is an integer m , then m T - 5 = 0 and Eo. (ill) for integral 
P 

values of Fn bo cones 

dF 
W 

g 

9  2 S 

It =6 
g 

1 - Pa(G) (15) 

ijr a 1>2,3>- 

In the derivation of Eq,   {!$) it is also assuiaed that    m    - w    > C    and 

m   v £   <   K-l   . 
0      T    - 

5 1 ] If » is an odd half-integer m + ^ , then m T - ^ = •? T . and T 0    0  2 '      0 t      ' 

Eq. (lli) for integral values of m reduces to 
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(ff 
m 

t =6 
B 

2    3 
"n   N 

2D
s!lTl-pJG-lTl -PS(G + |T! (16) 

In the derivation of Eq, (16) the facts that f(a) and pit) are even 
s 

functions, and that f t w =» w are utilized. Equations (15) and (16) 

hold for other interpolating functions *ast as long as f(a) = 0 for 

|a| >1 , and f(l^) = | . 

IV. Variance of Gate Circuit Output 

The variance of the gate circuit output is needed with the results 

from the previous section to compute the bearing error represented at 

the output of the gate circuit. It vail be assumed that threshold 

conditions exist such that S « N . This makes the mathematical 

derivation of the variance of the gate circuit tractable since only noise 

X noise terms are considered. 

The square of the output of the gate circuit is 

F2(VaT2Z E * 
K-l K-l 

^=0 m=0 

A 

i   m 

4-* 
G+t 

-^ 
T T 

f(a) da + I f(a) da 

-G+t 
g - I -1^ 

-m 

r 

G+t 

-/ f(a) da + | f(a) da 

J. J 
-G+t 

• m 
t 
-f -m 

(17) 

The erpectod value of F (t ) is the variance required, since the 

computation is done in the absence of signal. The only random variables 

A A 

in Eq.   (17) are R. and R ,    The integrals depend only on the assumed 

interpolating functions.    The computation cf    E 

(1),   (2),   and (6). 

A        A 

R, R 6   ra 
follows from Eqs, 
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E 

R-A   A-JL 

■^fe   1 1    ^     ^     „ 
sgn^ruC-jT)! sgia|n2(CT - 3T)j> sgn^C-kT^ sgn^n2 (mT - kT) 

(18) 

Since ^(t) and np(b) are uncorrelated, and if both have the same 

spectral characteristics, Eq.   (1.8) simplifies to 

E R.R 
■S m 

K-l K-l 

iEEH 1. arcsin<pK (k-j)T arcsin p^Ck-j-mt ^)Tl (1?) 

j=0 k»0 

Equation (19) appears extremely complicated^ but many terms for the summation 

indices m and « are absent because the multipliers in Eq.   (17) vanish. 

Combininc the results of Eq.   (19) with those in Eq.   (17), we have 

2/,   v       2 T1 

a„ (t  ) a   - T? S.i-, Irr
1 

m 3   k 

(20) 

where 
K 

G+t 
■ m ■ m 

AlS   -i-m f(a) da   +     | f(a) da 

-G+t 
R -m -m 

(21) 

and 

^    = arcsin <|p„(kT); yki;/ (22) 

The weighting function A is evaluated in Table 1 for several integer 

G ft \ 
values of - at half-integer values of Lü - nj   ,    llote that  the weighting 

functions have odd syirmetry.    Since  the correlation lunctions ji k-j_ni+^ 
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I 

are functions of (m-^), it is conveniont to evaluate the double summation 

over I  and m by considering terms of the type (m- ^) - 0 , (ra- •ß) « t 1 , 

(rn - ^) = + 2 , etc. Letting (m- -5) = a , we have 
1 

aF
2(tg) 

K-l K-l K-l 

3=0 k=0 m=0 a 

(23) 

The limits for the summation index a are not defined because only a few 

values of m and i  in Eq, (20) produce non-zero vo.lues of the product of the 

weighting functions. It is assumed that the double summation over m and a 

in Eq, (23) includes all non-zero values of G  lg 
m  }       rp m + a 

'r    "t„ G Is 
T* T 

\ 
"in 

1        w       ^^Tr" ~K -14 -3.5 -3 -2.5 -2 -1.5 -1.0 -.5 0    j 

1 0 0 0 0 0 i 
B 

i 5 
B 0 

2 0 0 0 1 1 7 
B i 3 

Ü 
0 

3 0 1 
B 

1 
2 

7 1 l i 3    1 o   1 

Table 1  Values of weighting function for 

triangular interpolating function 

The product A 
. t 
G _E 
T ■» T 

m+ a 
G _g 

is Glio\ni in Table 2 for 

w " 1 and various values of a. The indicated summation over index m in 

Eq. (23) is also cxcLdted in Table 2. The coefficients generated arc 

depondent on the position of the gate center, t , relative to the estimate 

points. Two conditions are considered:  the gate center halfway between 
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tv/o correlation estimate points, and the gate center coincident with an 

estimate point.  It is interesting to note that the sum of coefficients 

for all values of a is always zero. 

a\j-m -2 -1.5 -1-0 -.5 0 1           r1 

1.0 

T 

1.5 2.0 
p- 

m 
half 

1    vteger integer   j 

0 0 1 1 
n 25 0 25 1 i 

SU 0 ■     -3 
16 

1          ! 

1 0 5 
611 0 25 0 5 

5n 0 0 0 i    15 0           | 

2 0 5 i 5 0 0 0 0 0 5 
" 32 

1       1 

3 0 i 
" SU o   | o 0 0 0 0 0 1 

0 

i 

■: 

Table 2  Non-zero products of weighting functions 

for different a. G/T = 1 

From Table 2, for the case in which t is coincident with an estimate 
g 

point (t /T an integer), Eq. (23) reduces to 

K-l K-l 
2 T 

3--0 k=0 

(2U) 

Y'oT  t halfway between estimate points (t /T a half-integer), we have 

K-l K-l 

F. 
2 TP r1 ^r 
n K)    L   L  ^k-j 

j=0 k=0 

26 15 10 _1_ 
32 1J-k-J " 32 'Vj+l " 32 ^-3+2 " 32 VjOl 

(25) 

Combining the coefficients for positive and negative values of a is 

possible because \\.  is an even function. 
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If K is very large, and if \L  is essentially zero for k much smaller 

than K, then it can easily be shown by expansior of a double series of the 

type in Eq. (21+) that 

K-l K-l 

3=0 k=0 

K-l r-1 

Z ^k 1 ^+2r
)2 +E K *' ^r-k)2-r^r ~ ^ 

(26) 

k=0 k=l 

and 

K-l K-l 

E E ^ö^k-ö^k-j+2r.l^
K 

j=0 k=0 

where 

K-l r-1 

E W t \+2r.l)2 +  E K  - ^r-l-k^ 
k=0 k=l 

(27) 

r = 1,2,3,... (r«K) 

The approximations in Eqs. (26) and (27) are such that the loft-hand 

sides are slightly less than the right-hand sides because terms arc added 

to the left-hand sides to satisfy the approximations. Only the first few 

terms in the approximations arc significant, however. 

Applying the approximations in Eqs,   (26) and (27) to Eqs,   (2I4) and 

(25), wo have 

K-l 

1 

2 T 
n K 

2 

E ^ 'k+2 Y (28) 

k=0 

ÖF 
2^2 T 

=    n K 

K-l 

k=0 

v    V   15/ N2    10, N2     1 / \2i 1 , v2 
M^   ytK'^l' +32(|Lk-lik+2)  +32(lik-V3)  ^V^V 

(29) 

■• 

I 
i 
1 

I 
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I 

^or K = 2 , the product of tho woighting functions is shovm in Table 3. 
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The two results for the variance ox the gate output, corresponding to 

Eqs. (210 and (25), are 

K-l K-l 

^ 
j=0 k=0 

'.o\ (30) 

and 

2 K-l K-l 

3=0 k=0 

■•h^k.M-'03^-3+5
) (31) 

5=2 

Note that the coefficients of the corresponding terms in Eqs. (30) and (31) 

arc much more nearly equal than those in Eqs, (2I4) and (25). As =■ increases, 

dependence of the coefficients on the position of the gate center diminishes. 

With the approximations in Eqs, (26) and (27), Eq. (30) simplifies to 

2 T 
n K 

K-l 

K< E 2VW2 + 2(lik-V2)2 + 2^k-^k+3
)2+ ^^k-^ii^ 

K=0
L A 

2 
- 8 ^k + h |i0 + 2(ix1-p,^) + .5(^-^3) (32) 

Equation  (31) \ri.ll not be considered further bucause it is nearly the same 

as Eq.   (30). 

It is also interesting to sec the effects of the shape of the assumed 

interpolating function on the value of the variance of the gate output.    For 

this purpose,  the rectangular interpolating function shown in Fig,  3 is used. 

J4,       I 

1 
T 

] 
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r 

i 
2 

f(a) 

Tl 

1 
2 

Ia| < | 

f(a) =U   |a| = i 

^0   |a| > ^ 

— a 

Figuro 3  Rectangular Interpolating Function 

The woichting function defined in Eq, (21) for the arbitrary 

interpolating function is evaluated in Table Ij for the rectangular 

interpolating function. 

GXf"" 
-3.5 -3 -2 5 -2.0 -1.5 -1.0 -.5 0 

1 - - - - 0 
... 

.5 1.0 0    j 

2 - - 0 .5 1.0 1.0 1.0 o  1 
3 0 .5 1 0 1-0 1.0 1.0 1.0 

   
0 

Table I4  Values of vrcighting function for 

rectangular interpolating function 

G V Tho product Aw,-#-in + a m  is sno\m in Table 5 for m B 1    and 

various values of a. In Table 6 the same product is evaluated for s = 2 

The summation indicated over index in in Eq. (23) is also evaluated for 

V integer and half-integer values of -ar    in Tables 5 and 0. 
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From Tablu Jj, the variance ox the gate output for integer and half- 

integer values of t /T respectively cm bo shown to be 

' 

K-l 
2 T % r  1.     $ 

k=0 

K-l 

% 
2 T 
n K 2( M-v - ^ k-'-l' 

k=0 

^=1 

^=1 T  i 

(33) 

(3li) 

^ 

Equation (33) is identical to Eq. (28), but Eq. (3I4) is considerably different 

from Eq. (29) and Eq. (33). 

From Table 6, for = = 2 , it can be seen that the variance for integer 

values of t /T is identical to that of the corresponding case for the 

triangular interpolating function. In fact, the variance for integer values 

of t /T for all integer values of » can be shown to be independent of the 

shape of the interpolating function, as long as it is symmetrical and zero 

for |a| > 1 . 

For half-integer values of t /T the variance may be shown to bo 

approximately 

K-l 

V 
2 T 

,11 K 
k-0 

c—1 p p ?      ' 

+ h %    + 2 (^ - ii2 y (35) 

An examination of the coefficients in Table 6 T = c for half- 

integer values of t./T shows that they are closer to those for integer 

I r  1 
values of t/T than those listed in Table $    U, = 1 . However, the S ^ |T   I ' 

Q 
convorgonco of both sets of values for increasing ?i is not as rapid for 
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the rectangular interpolating function as it is for the triangular 

interpolating function. Evidently, the dependence of the variance on the 

position of t relative to the estir.atc points dinlnishes as » increases 

and as the interpolating function becomes smoother, 

V. Bearing Error at Output of Gate Circuit 

(9) 
From previous work,   bearing error or uncertainty has been defined 

by a relation similar to the one found in Eq. (36). 

a0 ^ H ^ 
OF 
dt 

(36) 

In Eq. (36), c is the speed of sound in the medium and d is the separation 

between transducers in Fig. 1. The relation holds for small bearing angles. 

The following equations are the results of substituting Eqs. (28), 

(29), (32), (33), Oh),   (35), (15) and (16) into Eq. (36). 

For both interpolating functions and integer values of t /T, we have 

c    T    / N 

K-l 

z 
Lk=0 
.EH k  - ^+2 )C 

1/2 

(37) 

1 - PR(T) 

and 

c    T 
Oo1 

= H ^2 S 

K-l 

 1 

!c=0 
E r ^+^1)2 + 2K-V2)2 + 2(|Ik^k+3)2 + ^K'^ 

- 8 HjH + h\iQ
2 + 2(ti1-n2)

2 + .Si^.^f 

-il 
2 

1 - PS(2T) 

(38) 
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For half-integer values of t /T, 

'K-I , 

ana .,   G w «= 1 , wo have 

c    T    N 

-1I/2 

E m^x." ^1)2+i^k - hc+2)2+^(^- ^+3) T ^1" ^2)C 

.k=0 

and 

PJ|T P,I|T) sl2 
(39) 

(triangular interpolating 
function) 

a, 
c    T  /N 

09      d^S 

K-l 

L 2K~\+i)C 

k=0 

1/2 

k\b\ - 4b 
m 

(rectangular interpolating 
function) 

Finally, for half-integer values of t ,/T, s = 2 , and the rectangular 
b ■'• 

interpolating function, wc have 

G92
ad^i75is 

l k=0 ^ 

x2 
+ Mhc. s2 

hc+2 ) + 2(.k 
^2 

"V3)  ' H2< 
2 

■2(^-^2) 

'^IM-PslM-pJI1 

(itD 

^ 

In the section that follows, numerical evaluation of Eqs. (3?) through 

(!tl) is presented. 
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VI, Numerical ücamoles 

In this section, specific functions arc assumed for the normalized 

correlation functions for signal and noi:ie? typical values are assumed for 

the parameters of the DELTIC, and the corresponding bearing uncertainties 

at the output of the gate circuit are computed. The results are compared 

to those obtained by Ostrandcr and Rae^  for the linear system, and by 

Usher^   for a null-output split-beam system. For the purposes of 

comparison, equivalent observation times and identical array configurations 

are assumed. 

The signal and noise spectral densities are assumed to be identical, 

except for power level, each being given by 

S 
cCO 

CO     <  CO 

G>) =< m 
H > wo 

il 

i 

i 

and 

G (u) = ( 
n 

^Cü 
CO     < CO 

-    0 

CO      > CO 

(1(3) 

The normalised autocorrelation functions for signal and noise follow. 

P,.(T) = P  (T) - 
sm co T 
 o 

co x 
0 

sine 
'CO T 

1    0 

IT ihh) 

Those assumptionb arc fairly realistic in that signal and noise are whitened 

by the amplifiers and spectrum shepers in tig. 1 to an upper frequency 

(10) 
limit dctcrnincd by the target range. 

I 

i 
I 
I 
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If   V = 2 ' frora Eqs- (22^ and ^l^ we ha ve 

[i   - srcsin <sinc -r m 

The values of LL are listed in Table 7 

\ 

l'   k 0 1 2 3 ii 5 6 7 8 9 

\ 1 1.57 .692 0 -.213 0 .127 0 -.091 0 .073 

Table ?       ^    as a function of k for    w T = ~ 
K 0 c. 

The results in Eqs. (37) through (id) have been computed and the 

d K1/2 S 
normalized bearing uncartainty, a0 - -7*— ~ )  for the different cases 

is shown in Table 8, 

Gate width  G/T 1 2 

Gato center  G /T 
half 

integer 
integer 

half 
integer 

integer 

triangular interpolation 2.28 

1.83 

^2.26 

1.90 

rectangular interpolation 2.76 2.63 

d Kl/2 S 
Table 8   aQ -- - = rr , Normalized bearing uncertainty 

for a) T = TT , band-limited uliite spectrur.i 
0   2 ' ' 
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If   uoT = n , Eqs.   (22) and (hh) yield 

|L   = arcsin fsinc ki = <; 

n 
2 

0 

k - 0 

k / 0 

(1*6) 

The property in Eq. (I46) allows a vast simplification of Eqs, (3?) through 

(I4I) and also allows the investigation in Section IV to be easily extended 

for values of normalized gate with ^ larger than 2. 

From the property in Eq. (1|6), 

T 

r.   .2 
Tt 

2 

Tc-j ^k-j-a < 

k = j       a = 0 

othen-dse 

(hi) f 

Equation (23) then reduces to 

K-l 

^VTZ 
m=0 

T'  T 
m (ii8) 

By extending Tables 1 and li, squaring, and summing, we can show the 

following relations. For the triangular interpolating function 

K-l 

1,1-0 

G  21 
T " IS 

£  3 
T " 2 

G 
T 

t 
^3,... half integer -^ 

TJT = 1,2,3,,.. integer -^ 

ih9) 

ror the rectangular interpolating function 

K-l 

u 
n=0 

i   ^   Si 

=     ^ 

G 
= 1,2,3,...  half integer -&■ 

- = ]   ?  3 
t 

integer -^ 

(50) 
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By siinpllfying Eq.  (15) for   co T = n , lie obtain for integer values 

of tg/T 

j 

i 

dt 
g 

P 2 S 
n N 

t =6 
g 

For half integer values of t /T and co T = n , Eq, (16) yields 

r 

dt 
g 

2 S 1 
n N n S   [     ' 

G/T 

t =6 
g 

2 2  1 
-1 

2§+l 

: 2 S 2 g - (-1)G/T - 1 
n N n      ^ 

^1 "I 

(51) 

(52) 

I Substituting the results of Eqs. (hS) through (52) into Eq. (35), we 

have for integer values of t /T, and both interpolating functions, 
g 

0. 
i 2^ 

c N ,.-1/2» (G  3 
dÜ K ^ T T "U 

1/2 
1,2,3. (53) 

For half-integer values of t /T, 

\     2^ 
o   —.   « 

,(GI 

10,1/2 
X (7p-)        (rectangular) 

/G\2 G/T 
li(~l    +  (-1)        -1 

c N    -1/2 

v,G _21 
X   T     32 

1/2 
w 

(triangular) 

v 
2,3,14,... 
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As 5» increasesj, the effect of the interpolating function vanishes, but 

the position of t  (t --=5) makes the result in Eq. (51;) higher by a 

factor £ as a result of the decreased slope of F in the vicinity of 

t = 5 for half-integer values of t /T. 
g 6 g7 

In order to compare the above results to those obtained by Ostrander 

and Rae, we note that the total observation time is KT, In terms of 

(5) 
bearing uncertainty, the results of Ostrander ■ A  Rae  yield Eq. (55), 

which is written in terms of the symbols used in this report. 

11/2 

o. c 
d 

n 
KT 

1/2 

CO 

co G (Cü) G (co) + 2 Gfco) du 

LO 
00 (55) 

w G (u) dw 

v.i. 

T_- 

( i i 
i 

x 

11 

i 
r   I 

For the bpsctra in Eqs. (l;2) and (itf), and if « « 1 , Eq. (55) reduces to N 

aö   =(3n)1/2^K-1/2T-1/2
Wo-V2 (56) 

Equation (56) holds only for small values of G such that the autocorrelation 

functions for signal and noise may be approrimated by 

P(T) = 1 + X. p(o) 
21 

for |T|   < G 

For the assumed spectra, the power series appro:d.mation is 

Sin 0) T       (w T )    (" T ) 
, ,       0   ,   x o ■  ,   0 ' 

P(T) =   = 1 +   
CO T 
0 

■3 1 5! 

(57) 

(58) 

I 

I 
I 

I 
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If T = G and w G = £ , the first two terns of 3q. (58) yield .589, 

which is a good approximation to the actual value of .638  Thus Eq. (56) 

is a good approximation for w G < ^ , 

For the system considered in Table 8, co T = 5 , Eliminating 

from Eq, (56), we have 

,1/2 

CO 

, IZJLL   = I K-
1
/

2
! - 1.56 * I K-1/2! 

0T n d 5 d b 
L 

From the data in Table 8 for   = = 1 , 

(59) 

ae= (1.83 to 2.76)^|K-1/2T 

r r 
The data for m = 2 is not significantly different. For w » 1 , 

co G = 77 in this case and comparison for equal gate widths is valid. 

For the system represented by the development leading to Eqs. (53) 

and (5k),    co T = n . Eliminating co from Eq, (56), we have 

3^; c N ,-1/2, 
0T       do L   n 

n  1 
Equation (61) is valid only if ^ < ^ , The ratio of the bearing 

uncertainty in Eqs, (53) and (51) to that in Eq. (6l) represents a 

reasonable performance index that indicates the effect of increasing 

the gate width. We have as the upper bound 

(60) 

(61) 

3 II
G 

.(G^/2 
X m I    for rectangular 

interpolation 

h  • 6 ^w + (-1) 1)G/T 

x 
2111/2 

32 
for triangular 
interpolation 

(62) 
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and as the lower bound 

n2       [G     3\1/2 

2  .  (F1 lf " ^ 

Equations  (62) and (63) are evaluated and plotted in Fig.  h. 

(63) 

The result for bearing uncertainty for a split-beam system reported 

11/2 

by Usher^ ' is 

;0  Md 
SM 

,1/2 

T  (W
L
) 
1/2 

^  2 
HnM  g„ (w) d-o B "n 

m 
HB(» gs(w) 

For our system, M = 1 and the noise bandwidth of the low-pass filter (11) 

is 60= r— , Also the quantities Mo")  g (w) and  HR(JCü) gD(w) 

correspond to the signal and noise spectra assumed in this report. Under 

these conditions, the results for the split-beam system are identical to 

those of Ostrander and Rae. 

i I 

i 

i 

m.  i I 

i    • 

1 

I 

i 
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VII. Effect of Hoalinear Traclrer Q/OX-IA) 

The results of Pryor's analysis^ ^ can be applied to the system in 

this report, but some care must be exercised in using Eq,(6Jin Reference (h). 

The actual step size of the tracker will be deilned as h   so that the 
g 

gate center of the tracker can assume values 

t = 6 + r A 
g      g 

r * 0,  tl, 12, 13,... 

It is assumed that A is much smaller than T. The gate circuit output has 

2 
a variance a„ and the mean value of F fcr small shifts of the gate center 

defined by Eq. (65) is approximately 

F^r A 
g dt 

(66) 

t »6 
g 

Expressions for a™ and the derivative of F have been given in previous 

sections. From Eq, (66), the shift of the input probability distribution 

each time a step A is taken is 

dp. 

dt 

t =6 
g 

ih) Following Pryor's analysis,v  we are forced to normalize the input 

dF 
standard deviation o^ by the factor —rr 

g 
, Equation (67), which 

t «6 
g 

follows, is essentially Eq. (6), Reference (I4), modified to apply to the 

system considered in this report. 

n^l, 
•8 A Op 

g E 

\ 

dF 

dt 

t -Ö 

(67) 

r 

...A 

(65)  T 
4» 

I 

3 

I 

■..■.v 
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^ 

The bearing uncertainty at the output of the gate circuit, a^,  for 

small bearing angles is ^ a , and from Eq, (6?) is given by 

V ■ l/V "9)
1/2 

where 

^Q = H üg 

Equation (68) is valid only where AQ « aQ . 

G In Section VI for   ^ = 1 , the follo^dng relation held for aQ 

/■ 

c    T    N 
^HJ^S 

%< < 

MS 
L 

c     T     N 
3 JTTÜ 

V = J 

co T = n 
o 

(68) 

(69) 

(70) 

From Eq,   (69) and the inequality of AQ, we have 

•f « < 

1.831 r1^ 

.^gr1/2 

Tu 

0       d 

co T = n 
0 

for validity of Eq. (68), 

A final complete numerical computation using approximate system 

parameters is now in order. It will be assumed that 

(71) 

K = 500 

T = 50X10  sec. 

0  1 
T l 
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c = 5000 ft/sec. 

d = 100 ft. 

N 100 N - -20 db. 

1 ;, 

it. 1 

tu 1 
ä 

ii I       1 

From Eq. (6l) for the linear and optimal result, we have 

1/2 
o     = 2 ^522 (iOO)(500r:L/2(50XlO"6) = 6.liiX10"3 rad = .35 degrees 
yL   it  100 

(72) 

i i 

i 

Assuming from Fig. h that an average performance index of 2 is appropriate 

for w =• 1 , the bearing uncertainty for the output of the gate circuit is 

aö
/^2(.35) = .7 degrees (73) 

r    I 

5 r 1 

The inequality in Eq,  (70) is easily satisfied, so that the bearing 

uncertainty represented by the output of the W0X-1A tracker from Eqs.  (68) 

and (69) is 

^ "IB 

l/h '500ü;   .,;-.s;,.,... . 6 
100 

(.05)(50Xl0-u)(57.3)(.7) 
1/2 

,056 degrees 

i 
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VIII. Summary and Conclusions 

The numerical comparisons carried out in Section VT. show that the 

clipping and sampling operations of the DELTIC processors which were used 

to compute a sampled estimate of the correlation function caused increased 

bearing uncertainty relative to that provided by a system without sampling 

or clipping. 

The degradation is not too large, however, if the gate width is not 

large relative to the correlation time. From the numerical factors in 

Eq, (59) and Table 8 the ratio of bearing uncertainties ranges from 1,17 

to 1,1;6 for triangular interpolation. The variation is caused by the 

position of the signal delay time relative to the integral values of T 

at which the correlation estimates are made, Very nearly the same results 

are obtained for gate width taking on values equal to the correlation time 

of the process and also one-half the correlation time of the process. This 

result shows that there is no advantage gained by making the gate width 

extremely small. 

\ By doubling the bandwidth of the spectrum, it was possible to obtain 

numerical results for fairly large values of gate width due to the special 

nature of the autocorrelation function of signal and noise. Figure h shows 

the ratios of bearing urcertainties for this situation. In this case, for 
p 
« - 1 , the gate width is equal to the correlation time of the process. 

Quite widely varying anawers are obtained due to the nature of the 
sin u T 

interpolating functions and the assumed —■ • ■ ■ ■ autocorrelation function 
CO v 
0 

for signal and noise. 

However, the performance index generally increases as the square root 

of the gate width, io\  gate width larger than the correlation time. For 

« => 1 , the ratio of bearing uncertainties varies between 1.0 and 3.0 for 
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triangular interpolation.    It is expected that the variation vjould be smaller -' 
« 

and less dependent on the position of the gate center for other assumed 

However, the slope term   gr- 
g t =5 

g 

"!■ 

autocorrelation functions, but the computation would have been much more 

difficult. An average value of 2 for the ratio of bearing uncertainty 

for the PUFFS system to that for the system without clipping or sampling       ,, | 

seems reasonable. 

For the numerical example considered in Section VIE, one might say 

that OQ = .7 degrees corresponds to a bearing error that exceeds the 

linear range of the gate circuit. For =r = 1 , the gate width corresponds 

to an angle of § G(57.3) = .11+3° . An examination of a slightly altered 

version of Eq. (1I4) reveals that the maximum of the gate output occurs in 

P 
the vicinity of  t - 6 ^ G for all «, and the previous comment might 

g ■'■' 

seem to be correct. 

in Eq. (36) is used merely as a 

calibration constant in computing an apparent bearing inaccuracy from the 

magnitude of the output signal. Note that t = 5 for this computation. 
o 

The WOX-OA tracker does cause t to change in accordance with the output 

signal of the gate circuit, and it is the tracker output that one must 

examine to be careful that the error does not exceed, say, one-third of        . 

the angle at which the peak output of the tracker occurs. In the example 

considered, the tracker random bearing error is .056 degrees, which 

slightly exceeds one-third of the maxinim linear range of 0.1li3 degrees. 

It is interesting to note that the W0X-1A tracker is able to reduce 

the apparent bearing uncertainty because it acts as a nonlinear low-pass 

filter on the output of the gate circuit and simply makes the effective 

I 
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observation time rauch longer than the observation time, KT, for the 

estimated data feeding into the gate circuit. It should also be noted 

that the actual observation time for the PUFFS system is one-half that 

of a continuously operating system, since no autocorrelation estimates 

are made during the Intervals that DELTIC 1 is in the loading mode. 

i 
'; 

I 
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